[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Segmentation of 3D Brain Structures Using the Bayesian Generalized Fast Marching Method

  • Conference paper
Brain Informatics (BI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6334))

Included in the following conference series:

Abstract

In this paper a modular approach of segmentation which combines the Bayesian model with the deformable model is proposed. It is based on the level set method, and breaks up into two great parts. Initially, a preliminary stage allows constructing the information map. Then, a deformable model, implemented with the Generalized Fast Marching Method (GFMM), evolves towards the structure to be segmented, under the action of a force defined from the information map. This last is constructed from the posterior probability information. The major contribution of this work is the use and the improvement of the GFMM for the segmentation of 3D images and also the design of a robust evolution model based on adaptive parameters depending on the image. Experimental evaluation of our segmentation approach on several MRI volumes shows satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms. IEEE Transaction, Pattern Analysis. Machine Intelligence 2(1), 1–8 (1980)

    Article  MATH  Google Scholar 

  2. Carlini, E., Falcone, M., Forcadel, N., Monneau, R.: Convergence of a Generalized Fast Marching Method for a non-convex eikonal equation (2007)

    Google Scholar 

  3. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  4. Chen, X., Teoh, E.K.: 3D object segmentation using B-Surface. Image and Vision Computing 23(14), 1237–1249 (2005)

    Article  Google Scholar 

  5. Forcadel, N.: Comparison principle for the generalized fast marching method. In: ENSTA, Mars 20 (2008)

    Google Scholar 

  6. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1987)

    Article  Google Scholar 

  7. Lynch, M., Ghita, O., Whelan, P.F.: Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge. Computerized Medical Imaging and Graphics 30, 255–262 (2006)

    Article  Google Scholar 

  8. Malladi, R., Sethian, J.A., Vemuri, C.: Shape modelling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)

    Article  Google Scholar 

  9. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependant speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sethian, J.: Level set methods and fast marching methods. In: Evolving interfaces in computational geometry, fluid mechanics, computer vision and material science. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  11. Xiao, D., Sing, W., Charles, N., Tsang, B., Abeyratne, U.R.: A region and gradient based active contour model and its application in boundary tracking on anal canal ultrasound images. Pattern Recognition 40(12), 3522–3539 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baghdadi, M., Benamrane, N., Sais, L. (2010). Segmentation of 3D Brain Structures Using the Bayesian Generalized Fast Marching Method. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds) Brain Informatics. BI 2010. Lecture Notes in Computer Science(), vol 6334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15314-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15314-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15313-6

  • Online ISBN: 978-3-642-15314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics