[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature Rating by Random Subspaces for Functional Brain Mapping

  • Conference paper
Brain Informatics (BI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6334))

Included in the following conference series:

Abstract

Functional magnetic resonance imaging is a technology allowing for a non-invasive measurement of the brain activity. Data are encoded as sequences of 3D images, usually few hundreds samples, each made by tens of thousands voxels, namely volumetric pixels. The main question in neuroimaging is the identification of the voxels affected by a specific brain activity. This task, referred to as brain mapping, can be conceived as a problem of feature rating. The challenge is twofold: the former is to deal with the high feature space dimensionality; the latter is the need for preservation of redundant features. Most common techniques of feature selection do not cover both requirements. In this work we propose the adoption of a random subspace method, arguing, by theoretical arguments and empirical evidence on synthetic data, that it might be a viable solution for a multi-variate approach to brain mapping. In addition we provide some results on a neuroscientific case study investigating on a visual perception task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biesiada, J., Duch, W., Kachel, A., Maczka, K., Pa, S., Palucha, S.: Feature ranking methods based on information entropy with Parzen windows. In: International Conference on Research in Electrotechnology and Applied Informatics (REI), pp. 109–119 (2005)

    Google Scholar 

  2. Cai, R., Hao, Z., Wen, W.: A Novel Gene Ranking Algorithm Based on Random Subspace Method. In: 2007 International Joint Conference on Neural Networks, pp. 219–223. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

  3. Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Ravishankar Rao, A.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44(1), 112–122 (2009)

    Article  Google Scholar 

  4. Destrero, A., Mosci, S., Mol, C., Verri, A., Odone, F.: Feature selection for high-dimensional data. Computational Management Science 6(1), 25–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Díaz-Uriarte, R., De Andrés, S.A.: Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7(3) (2006)

    Google Scholar 

  6. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  7. Horton, M., Cameron-jones, M., Williams, R.: Virtual Attribute Subsetting. In: Australian Joint Conference on Artificial Intelligence, pp. 214–223. Springer, Heidelberg (2006)

    Google Scholar 

  8. Jong, K., Mary, J., Cornuéjols, A., Cornu, A., Marchiori, E., Sebag, M.: Ensemble Feature Ranking. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 267–278. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Lai, C., Reinders, M.J.T., Wessels, L.: Random subspace method for multivariate feature selection. Pattern Recognition Letters 27(10), 1067–1076 (luglio 2006)

    Article  Google Scholar 

  10. Liu, H., Motoda, H. (eds.): Computational Methods of Feature Selection, 1st edn. Data Mining and Knowledge Discovery. Chapman & Hall/CRC (ottobre 2007)

    Google Scholar 

  11. Norman, K., Polyn, S., Detre, G., Haxby, J.: Beyond mind-reading: multi-voxel pattern analysis of fmri data. Trends in Cognitive Sciences 10(9), 424–430 (2006)

    Article  Google Scholar 

  12. O’Sullivan, J., Langford, J., Caruana, R., Blum, A.: FeatureBoost: A Meta Learning Algorithm that Improves Model Robustness. In: International Conference on Machine Learning (ICML), pp. 703–710. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  13. Saeys, Y., Abeel, T., Peer, Y.: Robust Feature Selection Using Ensemble Feature Selection Techniques. In: European conference on Machine Learning and Knowledge Discovery in Databases (ECMP/PKDD), Antwerp, Belgium, pp. 313–325. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Skurichina, M., Duin, R.P.W.: Bagging, Boosting and the Random Subspace Method for Linear Classifiers. Pattern Analysis & Applications 5(2), 121–135 (giugno 2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sutton, C., Sindelar, M., Mccallum, A.: Feature Bagging: Preventing Weight Undertraining in Structured Discriminative Learning (2005)

    Google Scholar 

  16. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Yu, L., Ding, C., Loscalzo, S.: Stable feature selection via dense feature groups. In: International Conference on Knowledge Discovery and Data Mining (KDD), pp. 803–811. ACM Press, New York (2008)

    Google Scholar 

  18. Zou, H., Hastie, T.: Regularization and variable selection via the Elastic Net. Journal of the Royal Statistical Society B 67, 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sona, D., Avesani, P. (2010). Feature Rating by Random Subspaces for Functional Brain Mapping. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds) Brain Informatics. BI 2010. Lecture Notes in Computer Science(), vol 6334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15314-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15314-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15313-6

  • Online ISBN: 978-3-642-15314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics