Abstract
In this paper we consider disjoint decomposition of algebraic and non-linear partial differential systems of equations and inequations into so-called simple subsystems. We exploit Thomas decomposition ideas and develop them into a new algorithm. For algebraic systems simplicity means triangularity, squarefreeness and non-vanishing initials. For differential systems the algorithm provides not only algebraic simplicity but also involutivity. The algorithm has been implemented in Maple.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Apel, J., Hemmecke, R.: Detecting unnecessary reductions in an involutive basis computation. J. Symbolic Comput. 40(4-5), 1131–1149 (2005), MR MR2169107 (2006j:13026)
Buium, A., Cassidy, P.J.: Differential algebraic geometry and differential algebraic groups: from algebraic differential equations to diophantine geometry. In: [Kol99], pp. 567–636 (1999)
Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE Package Janet: I. Polynomial Systems. II. Linear Partial Differential Equations. In: Proc. 6th Int. Workshop on Computer Algebra in Scientific Computing, Passau, Germany, pp. 31–54 (2003), http://wwwb.math.rwth-aachen.de/Janet
Boulier, F., Hubert, E.: DIFFALG: description, help pages and examples of use, Symbolic Computation Group, University of Waterloo, Ontario, Canada (1996-2004), http://www-sop.inria.fr/members/Evelyne.Hubert/diffalg/
Bouziane, D., Rody, A.K., Maârouf, H.: Unmixed-dimensional decomposition of a finitely generated perfect differential ideal. J. Symbolic Comput. 31(6), 631–649 (2001), MR MR1834002 (2002c:12007)
Bächler, T., Lange-Hegermann, M.: AlgebraicThomas and DifferentialThomas: Thomas decomposition for algebraic and differential systems (2008-2010), http://wwwb.math.rwth-aachen.de/thomasdecomposition/
Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: ISSAC, pp. 158–166 (1995)
Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Engrg. Comm. Comput. 20(1), 73–121 (2009), MR MR2496662 (2010c:12005)
Boulier, F.: Differential elimination and biological modelling, Gröbner bases in symbolic analysis. Radon Ser. Comput. Appl. Math. 2, 109–137 (2007), MR MR2394771 (2009f:12005)
Boulier, F.: BLAD: Bibliothèques lilloises d’algèbre différentielle (2004-2009), http://www.lifl.fr/~boulier/BLAD/
Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)
Dellière, S.: D.m. wang simple systems and dynamic constructible closure, Rapport de Recherche No. 2000–16 de l’Université de Limoges (2000)
Diop, S.: On universal observability. In: Proc. 31st Conference on Decision and Control, Tucaon, Arizona (1992)
Ducos, L.: Optimizations of the subresultant algorithm. J. Pure Appl. Algebra 145(2), 149–163 (2000), MR MR1733249 (2000m:68187)
Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simulation 45(5-6), 519–541 (1998), Simplification of systems of algebraic and differential equations with applications. MR MR1627129 (99e:13033)
Gerdt, V.P., Blinkov, Y.A.: Minimal involutive bases. Math. Comput. Simulation 45(5-6), 543–560 (1998), Simplification of systems of algebraic and differential equations with applications. MR MR1627130 (99e:13034)
Gerdt, V.P.: Completion of linear differential systems to involution. In: Computer Algebra in Scientific Computing—CASC 1999, Munich, pp. 115–137. Springer, Berlin (1999), MR MR1729618 (2001d:12010)
Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Computational Commutative and Non-Commutative Algebraic Geometry, NATO Sci. Ser. III Comput. Syst. Sci., vol. 196, pp. 199–225. IOS, Amsterdam (2005), MR MR2179201 (2007c:13040)
Gerdt, V.P.: On decomposition of algebraic PDE systems into simple subsystems. Acta Appl. Math. 101(1-3), 39–51 (2008), MR MR2383543 (2009c:35003)
Gerdt, V.P., Yanovich, D.A.: Investigation of the effectiveness of involutive criteria for computing polynomial Janet bases. Programming and Computer Software 32(3), 134–138 (2006), MR MR2267374 (2007e:13036)
Gerdt, V.P., Yanovich, D.A., Blinkov, Y.A.: Fast search for the Janet divisor. Programming and Computer Software 27(1), 22–24 (2001), MR MR1867717
Habicht, W.: Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens. Comment. Math. Helv. 21, 99–116 (1948), MR MR0023796 (9,405f)
Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms. I. Polynomial systems. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS, vol. 2630, pp. 1–39. Springer, Heidelberg (2003), MR MR2043699 (2005c:13034)
Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms. II. Differential systems. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS, vol. 2630, pp. 40–87. Springer, Heidelberg (2003), MR MR2043700 (2005c:13035)
Janet, M.: Leçons sur les systèmes des équationes aux dérivées partielles. In: Cahiers Scientifiques IV, Gauthiers-Villars, Paris (1929)
Kolchin, E.R.: Differential algebra and algebraic groups. Pure and Applied Mathematics, vol. 54. Academic Press, New York (1973), MR MR0568864 (58 #27929)
Kolchin, E.R.: Selected works of Ellis Kolchin with commentary. American Mathematical Society, Providence (1999); Commentaries by Borel, A., Singer, M.F., Poizat, B., Buium, A., Cassidy, P.J. (eds.) with a preface by Hyman Bass, Buium and Cassidy. MR MR1677530 (2000g:01042)
Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in Maple. SIGSAM Bull. 39(3), 96–97 (2005)
Li, Z., Wang, D.: Coherent, regular and simple systems in zero decompositions of partial differential systems. System Science and Mathematical Sciences 12, 43–60 (1999)
Mishra, B.: Algorithmic algebra. Texts and Monographs in Computer Science. Springer, New York (1993), MR MR1239443 (94j:68127)
Riquier, F.: Les systèmes d’équations aux dérivées partielles (1910)
Ritt, J.F.: Differential Algebra. In: American Mathematical Society Colloquium Publications, vol. XXXIII. American Mathematical Society, New York (1950), MR MR0035763 (12,7c)
Rosenfeld, A.: Specializations in differential algebra. Trans. Amer. Math. Soc. 90, 394–407 (1959), MR MR0107642 (21 #6367)
Seiler, W.M.: Involution. In: Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2010), The formal theory of differential equations and its applications in computer algebra. MR MR2573958
shan Gao, X., Huang, Z.: Efficient characteristic set algorithms for equation solving in finite fields and application in analysis of stream ciphers, Cryptology ePrint Archive, Report 2009/637 (2009), http://eprint.iacr.org/
Thomas, J.M.: Differential systems, vol. XXI. AMS Colloquium Publications (1937)
Thomas, J.M.: Systems and roots. The William Byrd Press, Inc., Richmond Virginia (1962)
Wang, D.: Decomposing polynomial systems into simple systems. J. Symbolic Comput. 25(3), 295–314 (1998), MR MR1615318 (99d:68130)
Wang, D.: Elimination methods. In: Texts and Monographs in Symbolic Computation. Springer, Vienna (2001), MR MR1826878 (2002i:13040)
Wang, D.: ε psilon: description, help pages and examples of use (2003), http://www-spiral.lip6.fr/~wang/epsilon/
Wang, D.: Elimination practice. Imperial College Press, London (2004), Software tools and applications, With 1 CD-ROM (UNIX/LINUX, Windows). MR MR2050441 (2005a:68001)
Wu, W.-T.: Mathematics mechanization. In: Mathematics and its Applications, vol. 489, Kluwer Academic Publishers Group, Dordrecht (2000), Mechanical geometry theorem-proving, mechanical geometry problem-solving and polynomial equations-solving. MR MR1834540 (2003a:01005)
Yap, C.K.: Fundamental problems of algorithmic algebra. Oxford University Press, New York (2000), MR MR1740761 (2000m:12014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D. (2010). Thomas Decomposition of Algebraic and Differential Systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2010. Lecture Notes in Computer Science, vol 6244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15274-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-15274-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15273-3
Online ISBN: 978-3-642-15274-0
eBook Packages: Computer ScienceComputer Science (R0)