[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thomas Decomposition of Algebraic and Differential Systems

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6244))

Included in the following conference series:

Abstract

In this paper we consider disjoint decomposition of algebraic and non-linear partial differential systems of equations and inequations into so-called simple subsystems. We exploit Thomas decomposition ideas and develop them into a new algorithm. For algebraic systems simplicity means triangularity, squarefreeness and non-vanishing initials. For differential systems the algorithm provides not only algebraic simplicity but also involutivity. The algorithm has been implemented in Maple.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apel, J., Hemmecke, R.: Detecting unnecessary reductions in an involutive basis computation. J. Symbolic Comput. 40(4-5), 1131–1149 (2005), MR MR2169107 (2006j:13026)

    Google Scholar 

  2. Buium, A., Cassidy, P.J.: Differential algebraic geometry and differential algebraic groups: from algebraic differential equations to diophantine geometry. In: [Kol99], pp. 567–636 (1999)

    Google Scholar 

  3. Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE Package Janet: I. Polynomial Systems. II. Linear Partial Differential Equations. In: Proc. 6th Int. Workshop on Computer Algebra in Scientific Computing, Passau, Germany, pp. 31–54 (2003), http://wwwb.math.rwth-aachen.de/Janet

  4. Boulier, F., Hubert, E.: DIFFALG: description, help pages and examples of use, Symbolic Computation Group, University of Waterloo, Ontario, Canada (1996-2004), http://www-sop.inria.fr/members/Evelyne.Hubert/diffalg/

  5. Bouziane, D., Rody, A.K., Maârouf, H.: Unmixed-dimensional decomposition of a finitely generated perfect differential ideal. J. Symbolic Comput. 31(6), 631–649 (2001), MR MR1834002 (2002c:12007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bächler, T., Lange-Hegermann, M.: AlgebraicThomas and DifferentialThomas: Thomas decomposition for algebraic and differential systems (2008-2010), http://wwwb.math.rwth-aachen.de/thomasdecomposition/

  7. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: ISSAC, pp. 158–166 (1995)

    Google Scholar 

  8. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Engrg. Comm. Comput. 20(1), 73–121 (2009), MR MR2496662 (2010c:12005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boulier, F.: Differential elimination and biological modelling, Gröbner bases in symbolic analysis. Radon Ser. Comput. Appl. Math. 2, 109–137 (2007), MR MR2394771 (2009f:12005)

    MathSciNet  MATH  Google Scholar 

  10. Boulier, F.: BLAD: Bibliothèques lilloises d’algèbre différentielle (2004-2009), http://www.lifl.fr/~boulier/BLAD/

  11. Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Dellière, S.: D.m. wang simple systems and dynamic constructible closure, Rapport de Recherche No. 2000–16 de l’Université de Limoges (2000)

    Google Scholar 

  13. Diop, S.: On universal observability. In: Proc. 31st Conference on Decision and Control, Tucaon, Arizona (1992)

    Google Scholar 

  14. Ducos, L.: Optimizations of the subresultant algorithm. J. Pure Appl. Algebra 145(2), 149–163 (2000), MR MR1733249 (2000m:68187)

    Google Scholar 

  15. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simulation 45(5-6), 519–541 (1998), Simplification of systems of algebraic and differential equations with applications. MR MR1627129 (99e:13033)

    Google Scholar 

  16. Gerdt, V.P., Blinkov, Y.A.: Minimal involutive bases. Math. Comput. Simulation 45(5-6), 543–560 (1998), Simplification of systems of algebraic and differential equations with applications. MR MR1627130 (99e:13034)

    Google Scholar 

  17. Gerdt, V.P.: Completion of linear differential systems to involution. In: Computer Algebra in Scientific Computing—CASC 1999, Munich, pp. 115–137. Springer, Berlin (1999), MR MR1729618 (2001d:12010)

    Google Scholar 

  18. Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Computational Commutative and Non-Commutative Algebraic Geometry, NATO Sci. Ser. III Comput. Syst. Sci., vol. 196, pp. 199–225. IOS, Amsterdam (2005), MR MR2179201 (2007c:13040)

    Google Scholar 

  19. Gerdt, V.P.: On decomposition of algebraic PDE systems into simple subsystems. Acta Appl. Math. 101(1-3), 39–51 (2008), MR MR2383543 (2009c:35003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gerdt, V.P., Yanovich, D.A.: Investigation of the effectiveness of involutive criteria for computing polynomial Janet bases. Programming and Computer Software 32(3), 134–138 (2006), MR MR2267374 (2007e:13036)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gerdt, V.P., Yanovich, D.A., Blinkov, Y.A.: Fast search for the Janet divisor. Programming and Computer Software 27(1), 22–24 (2001), MR MR1867717

    Article  MathSciNet  MATH  Google Scholar 

  22. Habicht, W.: Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens. Comment. Math. Helv. 21, 99–116 (1948), MR MR0023796 (9,405f)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms. I. Polynomial systems. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS, vol. 2630, pp. 1–39. Springer, Heidelberg (2003), MR MR2043699 (2005c:13034)

    Chapter  Google Scholar 

  24. Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms. II. Differential systems. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS, vol. 2630, pp. 40–87. Springer, Heidelberg (2003), MR MR2043700 (2005c:13035)

    Chapter  Google Scholar 

  25. Janet, M.: Leçons sur les systèmes des équationes aux dérivées partielles. In: Cahiers Scientifiques IV, Gauthiers-Villars, Paris (1929)

    Google Scholar 

  26. Kolchin, E.R.: Differential algebra and algebraic groups. Pure and Applied Mathematics, vol. 54. Academic Press, New York (1973), MR MR0568864 (58 #27929)

    MATH  Google Scholar 

  27. Kolchin, E.R.: Selected works of Ellis Kolchin with commentary. American Mathematical Society, Providence (1999); Commentaries by Borel, A., Singer, M.F., Poizat, B., Buium, A., Cassidy, P.J. (eds.) with a preface by Hyman Bass, Buium and Cassidy. MR MR1677530 (2000g:01042)

    Google Scholar 

  28. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in Maple. SIGSAM Bull. 39(3), 96–97 (2005)

    Article  MATH  Google Scholar 

  29. Li, Z., Wang, D.: Coherent, regular and simple systems in zero decompositions of partial differential systems. System Science and Mathematical Sciences 12, 43–60 (1999)

    MATH  Google Scholar 

  30. Mishra, B.: Algorithmic algebra. Texts and Monographs in Computer Science. Springer, New York (1993), MR MR1239443 (94j:68127)

    Book  MATH  Google Scholar 

  31. Riquier, F.: Les systèmes d’équations aux dérivées partielles (1910)

    Google Scholar 

  32. Ritt, J.F.: Differential Algebra. In: American Mathematical Society Colloquium Publications, vol. XXXIII. American Mathematical Society, New York (1950), MR MR0035763 (12,7c)

    Google Scholar 

  33. Rosenfeld, A.: Specializations in differential algebra. Trans. Amer. Math. Soc. 90, 394–407 (1959), MR MR0107642 (21 #6367)

    Article  MathSciNet  MATH  Google Scholar 

  34. Seiler, W.M.: Involution. In: Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2010), The formal theory of differential equations and its applications in computer algebra. MR MR2573958

    Google Scholar 

  35. shan Gao, X., Huang, Z.: Efficient characteristic set algorithms for equation solving in finite fields and application in analysis of stream ciphers, Cryptology ePrint Archive, Report 2009/637 (2009), http://eprint.iacr.org/

  36. Thomas, J.M.: Differential systems, vol. XXI. AMS Colloquium Publications (1937)

    Google Scholar 

  37. Thomas, J.M.: Systems and roots. The William Byrd Press, Inc., Richmond Virginia (1962)

    MATH  Google Scholar 

  38. Wang, D.: Decomposing polynomial systems into simple systems. J. Symbolic Comput. 25(3), 295–314 (1998), MR MR1615318 (99d:68130)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, D.: Elimination methods. In: Texts and Monographs in Symbolic Computation. Springer, Vienna (2001), MR MR1826878 (2002i:13040)

    Google Scholar 

  40. Wang, D.: ε psilon: description, help pages and examples of use (2003), http://www-spiral.lip6.fr/~wang/epsilon/

  41. Wang, D.: Elimination practice. Imperial College Press, London (2004), Software tools and applications, With 1 CD-ROM (UNIX/LINUX, Windows). MR MR2050441 (2005a:68001)

    Google Scholar 

  42. Wu, W.-T.: Mathematics mechanization. In: Mathematics and its Applications, vol. 489, Kluwer Academic Publishers Group, Dordrecht (2000), Mechanical geometry theorem-proving, mechanical geometry problem-solving and polynomial equations-solving. MR MR1834540 (2003a:01005)

    Google Scholar 

  43. Yap, C.K.: Fundamental problems of algorithmic algebra. Oxford University Press, New York (2000), MR MR1740761 (2000m:12014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D. (2010). Thomas Decomposition of Algebraic and Differential Systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2010. Lecture Notes in Computer Science, vol 6244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15274-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15274-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15273-3

  • Online ISBN: 978-3-642-15274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics