Abstract
This work focuses on the computational power of the Mediated Population Protocol model on complete communication graphs and initially identical edges (SMPP). In particular, we investigate the class MPS of all predicates that are stably computable by the SMPP model. It is already known that MPS is in the symmetric subclass of NSPACE(n 2). Here we prove that this inclusion holds with equality, thus, providing the following exact characterization for MPS: A predicate is in MPS iff it is symmetric and is in NSPACE(n 2).
This work has been partially supported by the ICT Programme of the European Union under contract number ICT-2008-215270 (FRONTS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing, 235–253 (March 2006)
Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: PODC 2006: Proceedings of the 25th annual ACM Symposium on Principles of Distributed Computing, pp. 292–299. ACM Press, New York (2006)
Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the European Association for Theoretical Computer Science 93, 98–117 (2007)
Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: All symmetric predicates in NSPACE(n2) are stably computable by the mediated population protocol model. Technical Report FRONTS-TR-2010-17, RACTI (2010), http://fronts.cti.gr/aigaion/?TR=155
Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating logarithmic space machines. Technical Report FRONTS-TR-2010-16, RACTI (2010), http://fronts.cti.gr/aigaion/?TR=154 , CoRR. http://arxiv.org/abs/1004.3395
Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Brief announcement: Decidable graph languages by mediated population protocols. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 239–240. Springer, Heidelberg (2009)
Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Mediated population protocols. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 363–374. Springer, Heidelberg (2009)
Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Recent advances in population protocols. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 56–76. Springer, Heidelberg (2009)
Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die: Making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer, Heidelberg (2006)
Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pacific Journal of Mathematics 16, 285–296 (1966)
Guerraoui, R., Ruppert, E.: Names trump malice: Tiny mobile agents can tolerate byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 484–495. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G. (2010). All Symmetric Predicates in NSPACE(n 2) Are Stably Computable by the Mediated Population Protocol Model. In: Hliněný, P., Kučera, A. (eds) Mathematical Foundations of Computer Science 2010. MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15155-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-15155-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15154-5
Online ISBN: 978-3-642-15155-2
eBook Packages: Computer ScienceComputer Science (R0)