Abstract
A number of lightweight PIR (Private Information Retrieval) schemes have been proposed in recent years. In JWIS2006, Kwon et al. proposed a new scheme (optimized LFCPIR, or OLFCPIR), which aimed at reducing the communication cost of Lipmaa’s O(log2 n) PIR(LFCPIR) to O(logn). However in this paper, we point out a fatal error of overflow contained in OLFCPIR and show how the error can be corrected. Finally, we compare with LFCPIR to show that the communication cost of our corrected OLFCPIR is asymptotically the same as the previous LFCPIR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ambainis, A.: Upper Bound on the Communication Complexity of Private Information Retrieval Automata, Languages and Programming. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 401–407. Springer, Heidelberg (1997)
Beimel, A., Ishai, Y., Kushilevitz, E., Rayomnd, J.: Breaking on the o(n (1/(2k − 1))) barrier for information theoretic private information retrieval. In: 41th IEEE Symposium on Foundation of Computation Science (2002)
Chor, B., Gilboa, M.: Computationally Private Information Retrieval. In: ACM Symposium on Theory of Computing, pp. 303–313 (1997)
Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieva. In: IEEE Symposium on Foundations of Computer Science, pp. 41–50 (1995)
Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)
Damgard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)
Damgård, I., Jurik, M.: A Length-Flexible Threshold Cryptosystem with Applications. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364. Springer, Heidelberg (2003)
Beimel, A., Ishai, Y., Kushilevitz, E.: General constructions for information theoretic private information retreival (2003) (Unpublished manuscripte), http://www.cs.bgu.ac.il/beimel/pub.html
Kwon, D., Lee, J.: An efficient Computationally PIR protocol with Log Communication. In: The 1st Joint Workshop on Information Security (JWIS), Seoul Korea, September 20-21, pp. 491–499 (2006)
Kushilevitz, E., Ostrovsky, R.: Replication is not neeeded: Single database, computationally-private information retrieval. In: 38th IEEE Symposium on Foundimental of Computer Science, pp. 364–373 (1997)
Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)
Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tamura, J., Kobara, K., Fathi, H., Imai, H. (2010). A Note on a Fatal Error of Optimized LFC Private Information Retrieval Scheme and Its Corrected Results. In: Sion, R., et al. Financial Cryptography and Data Security. FC 2010. Lecture Notes in Computer Science, vol 6054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14992-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-14992-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14991-7
Online ISBN: 978-3-642-14992-4
eBook Packages: Computer ScienceComputer Science (R0)