[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 80))

Abstract

The goal of the paper is to assess the usefulness of various text similarity measures for the two layered Internet search. In that approach the first layer is a generic Internet search engine. The second layer enables the user to evaluate, reorganize, filter and personalize the results of first layer search. It is run on a local work station and can fully exploit the so called user dividend. Crucial for that stage is assessing text similarity between text segments. The papers discusses classical, statistic text similarity measures as well semantic, WordNet based semantic measures. The results of an experiment show, that without word disambiguation techniques the semantic approaches can not outperform statistic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Siemiński, A.: The potentials of client oriented prefetching. Intelligent technologies for inconsistent knowledge processing. In: Nguyen, N.T. (ed.) Magill: Advanced Knowledge International, cop., pp. 221–238 (2004)

    Google Scholar 

  2. Cox, K.: A Unified Approach to Indexing and Retrieval of Information, DOC 94-10/94 Eanff, Albera, pp. 176 -181 (1994)

    Google Scholar 

  3. Cox, K.: Searching by Browsing. University of Canberra, Australia. PhD Thesis

    Google Scholar 

  4. Sherman, C.: Humans Do It Better:Inside the Open Directory Project, (July 2000), http://www.infotoday.com/online/OL2000/sherman7.html. (2000)

  5. Manning, C., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  6. Beall, J.: The Weaknesses of Full-Text Searching. The Journal of Academic Librarianship 34(5), 438–444 (2008)

    Article  Google Scholar 

  7. Miller, G.A., Beckwith, R., Fellbaum, C.D., Gross, D., Miller, K.: WordNet: An online lexical database. Int. J. Lexicograph 3(4), 235–244 (1990)

    Article  Google Scholar 

  8. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and Knowledge-based Measures of Text Semantic Similarity. American Association for Artificial Intelligence, 775–780 (2006), www.aaai.org

  9. Siemiński, A.: Using WordNet to measure the similarity of link texts. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 720–731. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. http://nlp.stanford.edu/software/tagger.shtml

  11. Seco, N., Veale, T., Hayes, J.: An Intrinsic Information Content Metric for Semantic Similarity in WordNet. In: Proceedings of the European Conference of Artificial Intelligence (2004)

    Google Scholar 

  12. http://www.codeproject.com/KB/string/semanticsimilaritywordnet.aspx

  13. http://www.informatics.indiana.edu/fil/is/JavaCrawlers/

  14. Piasecki, M., Szpakowicz, S., Broda, B.: A WordNet from the ground up. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siemiński, A. (2010). Verifying Text Similarity Measures for Two Layered Retrieval. In: Nguyen, N.T., Zgrzywa, A., Czyżewski, A. (eds) Advances in Multimedia and Network Information System Technologies. Advances in Intelligent and Soft Computing, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14989-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14989-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14988-7

  • Online ISBN: 978-3-642-14989-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics