Abstract
The goal of the paper is to assess the usefulness of various text similarity measures for the two layered Internet search. In that approach the first layer is a generic Internet search engine. The second layer enables the user to evaluate, reorganize, filter and personalize the results of first layer search. It is run on a local work station and can fully exploit the so called user dividend. Crucial for that stage is assessing text similarity between text segments. The papers discusses classical, statistic text similarity measures as well semantic, WordNet based semantic measures. The results of an experiment show, that without word disambiguation techniques the semantic approaches can not outperform statistic methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Siemiński, A.: The potentials of client oriented prefetching. Intelligent technologies for inconsistent knowledge processing. In: Nguyen, N.T. (ed.) Magill: Advanced Knowledge International, cop., pp. 221–238 (2004)
Cox, K.: A Unified Approach to Indexing and Retrieval of Information, DOC 94-10/94 Eanff, Albera, pp. 176 -181 (1994)
Cox, K.: Searching by Browsing. University of Canberra, Australia. PhD Thesis
Sherman, C.: Humans Do It Better:Inside the Open Directory Project, (July 2000), http://www.infotoday.com/online/OL2000/sherman7.html. (2000)
Manning, C., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Beall, J.: The Weaknesses of Full-Text Searching. The Journal of Academic Librarianship 34(5), 438–444 (2008)
Miller, G.A., Beckwith, R., Fellbaum, C.D., Gross, D., Miller, K.: WordNet: An online lexical database. Int. J. Lexicograph 3(4), 235–244 (1990)
Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and Knowledge-based Measures of Text Semantic Similarity. American Association for Artificial Intelligence, 775–780 (2006), www.aaai.org
Siemiński, A.: Using WordNet to measure the similarity of link texts. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 720–731. Springer, Heidelberg (2009)
Seco, N., Veale, T., Hayes, J.: An Intrinsic Information Content Metric for Semantic Similarity in WordNet. In: Proceedings of the European Conference of Artificial Intelligence (2004)
http://www.codeproject.com/KB/string/semanticsimilaritywordnet.aspx
Piasecki, M., Szpakowicz, S., Broda, B.: A WordNet from the ground up. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Siemiński, A. (2010). Verifying Text Similarity Measures for Two Layered Retrieval. In: Nguyen, N.T., Zgrzywa, A., Czyżewski, A. (eds) Advances in Multimedia and Network Information System Technologies. Advances in Intelligent and Soft Computing, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14989-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-14989-4_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14988-7
Online ISBN: 978-3-642-14989-4
eBook Packages: EngineeringEngineering (R0)