[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Accelerated MJPEG 2000 Encoder Using Compute Unified Device Architecture

  • Conference paper
Contemporary Computing (IC3 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 95))

Included in the following conference series:

  • 717 Accesses

Abstract

With the recent tremendous increase in Graphics Processing Unit’s computing capability, using it as a co-processor of the CPU has become fundamental for achieving high overall throughput. Nvidia’s Compute Device Unified Architecture (CUDA) can greatly benefit single instruction multiple thread styled, computationally expensive programs. Video encoding, to an extent, is an excellent example of such an application which can see impressive performance gains from CUDA optimization. This paper presents a portable, fault-tolerant and a novel parallelized software implementation of Motion JPEG 2000 (MJPEG 2000) reference encoder using CUDA. Each major structural/ computational unit of JPEG 2000 is discussed in CUDA framework and the results are provided wherever required. Our experimental results demonstrate that GPU based implementation works 49 times faster than the original implementation on the CPU. For the standard frame resolution of 2048 × 1080, this new fast encoder can encode up to 11 frames/second.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. In: Eurographics 2005, State of the Art Reports, August 2005, pp. 21–51 (2005)

    Google Scholar 

  2. Information technology - JPEG 2000 image coding system - Part3: Motion JPEG 2000, ISO/IEC 15444-3 (2000)

    Google Scholar 

  3. Information technology - JPEG 2000 image coding system - Part1: Core coding system, ISO/IEC 15444-1 (2000)

    Google Scholar 

  4. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG 2000 still image coding system-An overview. Proc. IEEE Transactions on Consumer Electronics 46(4), 1103–1127 (2000)

    Article  Google Scholar 

  5. Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Processing 9(7), 1158–1170 (2000)

    Article  Google Scholar 

  6. Antonini, M., Barlaud, M.: Image coding using wavelet transform. IEEE Transactions on Image Processing 1(2), 205–220 (1992)

    Article  Google Scholar 

  7. Meerwald, P., Norcen, R., Uhl, A.: Parallel JPEG 2000 image coding on multiprocessors. In: Proc. of Int’l. Parallel and Distributed Processing Symp., USA, April 2002, pp. 2–7 (2002)

    Google Scholar 

  8. Muta, H., Doi, M., Nakano, H., Mori., Y.: Multilevel parallelization on the Cell/B.E for a Motion JPEG 2000 encoding server. In: Proc. ACM Multimedia Conf. (ACM-MM 2007), Augsburg, Germany (September 2007)

    Google Scholar 

  9. Kang, S., Bader, D.A.: Optimizing JPEG 2000 Still Image Encoding on the Cell Broadband Engine. In: Proc. of 37th International Conference on Parallel Processing, pp. 83–90 (2000)

    Google Scholar 

  10. Dishant, A., Kumar, M.M., Mittal, A.: Frame based parallelization of MPEG-4 on Compute unified device architecture (CUDA). In: Proc. IEEE International Advance Computing Conference (2010)

    Google Scholar 

  11. Chen, W., Hang, H.: H.264/AVC motion estimation implementation on compute device unified architecture (CUDA). In: Proc. IEEE International conference on Multimedia and Expo. (2008)

    Google Scholar 

  12. Franco, J., Bernabe, G., Fernandez, J., Acacio, M.E.: A parallel implementation of the 2D wavelet transform using CUDA. In: Proc. Euromicro International Conference on Parallel, Distributed and Network-based processing, pp. 111–118 (2009)

    Google Scholar 

  13. Zhong, H., Lieberman, S.A., Mahlke, S.A.: Extending multi-core architectures to exploit hybrid parallelism in single-thread applications. In: International Symp. on High-Performance Computer Architecture, Phoenix, Arizona (February 2007)

    Google Scholar 

  14. Michael, D.A., Kossentini, F.: JasPer-a software-based JPEG-2000 codec implementation. In: IEEE International Conference on Image Processing 2000, pp. 53–56 (2000)

    Google Scholar 

  15. Tenllado, C., Setoain, J., Prieto, M., Pinuel, L., Tirado, F.: Parallel Implementation of the 2D Discrete Wavelet Transform on Graphics Processing Units-Filter Bank versus Lifting. IEEE Transactions on Parallel and Distributed Sytems 19(2), 299–310 (2008)

    Article  Google Scholar 

  16. Bernabe, G., Garcia, J.M., Gonzalez, J.: Reducing 3D Wavelet Transform Excecution Time Using Blocing and the Streaming SIMD Extensions. Journal of VLSI Signal Processing 41(2), 209–223 (2005)

    Article  Google Scholar 

  17. Garcia, A., Shen, H.: GPU-Based 3D Wavelet Reconstruction with Tileboarding. The Visual Computer 21(8-10), 755–763 (2005)

    Article  Google Scholar 

  18. Moreland, K., Angel, E.: The FFT on a GPU. In: Graphics Hardware, July 2003, pp. 112–119 (2003)

    Google Scholar 

  19. NVIDIA Corporation. Accelerating MATLAB with CUDA using MEX Files (September 2007)

    Google Scholar 

  20. Misra, D., Yang, Y.: Coarse-grained parallel algorithms for multi-dimensional wavelet transforms. J. Supercomputing 12(1-2), 99–118 (1998)

    Google Scholar 

  21. Lian, C.J., Chen, K.F., Chen, H., Chen, L.G.: Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000. IEEE Trans. Circuits and Systems 13(3), 219–230 (2003)

    Google Scholar 

  22. Burt, P.J., Anderson, H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  23. NVIDIA Corporation. NVIDIA Compute Unified Device Architecture (CUDA) Programming Guide Version 2 (April 2009)

    Google Scholar 

  24. Parakh, N., Mittal, A., Niyogi, R.: Optimization of MPEG 2 Encoder on Cell B. E. Processor. In: IEEE International Advance Computing Conference, IACC 2009, March 6-7, pp. 423–427 (2009)

    Google Scholar 

  25. Lin, D., Xiaohuang, H., Nguyen, Q., Blackburn, J., Rodrigues, C., Huang, T., Do, M.N., Patel, S.J., Hwu, W.-M.W.: The parallelization of video processing I 26(6), 103–112 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanketh, D., Niyogi, R. (2010). An Accelerated MJPEG 2000 Encoder Using Compute Unified Device Architecture. In: Ranka, S., et al. Contemporary Computing. IC3 2010. Communications in Computer and Information Science, vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14825-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14825-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14824-8

  • Online ISBN: 978-3-642-14825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics