Abstract
This chapter presents a tentative survey of logic-based formalisms for representing various aspects of spatial information ranging from the expression of spatial relationships between regions to the attribution of properties to definite regions. The first main part of the paper reviews the logic-based representations of mereotopologies in classical or modal logics, and in fuzzy and rough sets settings, as well as modal logic representations of geometries. The second main part is devoted to the handling of properties associated to regions. The association either relates properties to a current region of interest, or to explicitly named regions. Properties may be attached to a whole region and hold “everywhere”, or hold “somewhere”, or “elsewhere”. Properties and their localization may be also pervaded with uncertainty. This overview reveals that the many existing formalisms address different issues, and when they deal with the same issue they do it differently. However, it seems that in practice there is a need for a combination of representational capabilities, which could cover both spatial relationships and localized properties, possibly in presence of uncertainty.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aiello, M., van Benthem, J.: A modal walk through space. Journal of Applied Non Classical Logic 12(3-4), 319–364 (2002)
Asher, N., Vieu, L.: Toward a Geometry of Common Sense: A Semantics and a Complete Axiomatization of Mereotopology. In: International Joint Conference on Artificial Intelligence (IJCAI), Montreal, Canada, pp. 846–852. Morgan Kaufmann Publishers, San Francisco (1995)
Balbiani, P.: The modal multilogic of geometry (1998) (manuscript )
Balbiani, P., Fariñas del Cerro, L., Tinchev, T., Vakarelov, D.: Modal logics for incidence geometries. Journal of Logic and Computation 7(1), 59–78 (1997)
Balbiani, P., Goranko, V.: Logics for parallelism, orthogonality, and affine geometries. Journal of Applied Non Classical Logic 12(3-4), 365–398 (2002)
Bennett, B.: Modal logics for qualitative spatial reasoning. Bulletin of the Interest Group in Pure and Applied Logic 3(7), 1–22 (1995)
Bennett, B.: A categorical axiomatisation of region-based geometry. Fundamenta Informaticae 36(1-2), 145–158 (2001)
Bennett, B., Cohn, A.: Consistency of topological relations in the presence of convexity constraints. In: Proceedings of the ‘Hot Topics in Spatio Temporal Reasoning’ workshop, IJCAI 1999, Stockholm (1999)
Bloch, I.: Fuzzy spatial relationships for image processing and interpretation: a review. Image Vision Comput. 23(2), 89–110 (2005)
Borgo, S., Guarino, N., Masolo, C.: A pointless theory of space based on strong connection and congruence. In: Carlucci Aiello, L., Doyle, J. (eds.) Principles of Knowledge Representation and Reasoning: Proc. 5th Intl. Conf (KR 1996), pp. 220–229. Morgan Kaufman, San Francisco (1996)
Bunge, M.: On null individuals. The Journal of Philosophy 63(24), 776–778 (1966)
Casati, R., Varzi, A.: Holes and Other Superficialities. MIT Press, Cambridge (1994)
Clarke, B.L.: Individuals and points. Notre Dame J. of Formal Logic 26, 61–75 (1985)
Clarke, B.L.: A calculus of individuals based on connection. Notre Dame J. of Formal Logic 22, 204–218 (1981)
Cungen, C., Yuefei, S., Zaiyue, Z.: Rough Mereology in Knowledge Representation. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639. Springer, Heidelberg (2003)
Demri, S., Orlowska, E.: Incomplete Information: Structure, Inference, Complexity. Springer, New York (2002)
Donnelly, M.: An Axiomatic Theory of Common-Sense Geometry. The University of Texas at Austin (2001)
Dubois, D., Dupin de Saint-Cyr, F., Prade, H.: A possibility-theoretic view of formal concept analysis. Fundamenta Informaticae 75, 195–213 (2007)
Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of logic in Artificial Intelligence and logic programming, vol. 3, pp. 439–513. Clarendon Press, Oxford (1994)
Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)
Dugat, V., Gambarotto, P., Larvor, Y.: Qualitative geometry for shape recognition. Applied Intelligence 17(3), 253–263 (2002)
Düntsch, I.: Contact relation algebras. In: Orlowska, E., Szalas, A. (eds.) Relational Methods in Algebra, Logic, and Computer Science, pp. 113–134. Physica-Verlag, Heidelberg (2001)
Düntsch, I., Orlowska, E., Wang, H.: Algebras of approximating regions. Fundamenta Informaticae 46, 71–82 (2001)
Dupin de Saint-Cyr, F., Jeansoulin, R., Prade, H.: Fusing uncertain structured spatial information. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 174–188. Springer, Heidelberg (2008)
Dupin de Saint-Cyr, F., Prade, H.: Logical handling of uncertain, ontology-based, spatial information. Fuzzy Sets and Systems, Advances in Intelligent Databases and Information Systems 159(12), 1515–1534 (2008)
Fariñas del Cerro, L., Orlowska, E.: Dal– a logic for data analysis. Theoretical Computer Science 36, 251–264 (1985)
Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Heidelberg (1999)
Jeansoulin, R., Mathieu, C.: Une logique des inférences spatiales. Revue internationale de géomatique 4(3-4), 369–384 (1994)
Mc Kinsey, J.C.C., Tarski, A.: The algebra of topology. Annals of Mathematics 45, 141–191 (1944)
Kripke, S.: Semantical analysis of Intuitionnist logic I. In: Crossley, J., Demmett, M. (eds.) Formal Systems and Recursive Functions. North Holland, Amsterdam (1963)
Kutz, O., Sturm, H., Suzuki, N., Wolter, F., Zakharyaschev, M.: Axiomatizing distance logics. Journal of Applied Non Classical Logic 12(3-4), 425–440 (2002)
Kutz, O., Sturm, H., Suzuki, N.-Y., Wolter, F., Zakharyaschev, M.: Logics of metric spaces. ACM Transactions on Computational Logic (TOCL) 4(2), 260–294 (2003)
de Laguna, T.: Point, line and surface as sets of solids. The Journal of Philosophy 19, 449–461 (1922)
Le Ber, F., Ligozat, G., Papini, O.: Raisonnements sur l’Espace et le Temps: des Modèles aux Applications. Hermes, Lavoisier eds (2007)
Lemon, O., Pratt, I.: On the incompleteness of modal logics of space. In: Advances in Modal Logic, pp. 115–132. CSLI publications, Standford (1998)
Lesniewski, S.: Sur les fondements de la mathematique. traduit du polonais par Kalinowski. Hermes, Paris (1989)
Martin, R.: Of time and null individuals. The Journal of Philosophy 62, 723–736 (1965)
Marx, M., Reynolds, M.: Undecidability of compass logic. Journal of Logic and Computation 9(6), 897–914 (1999)
Nicod, J.: La geometrie dans le monde sensible. In: English translation in: Geometry and Induction 1969, Presses Unitaires de France, Routledge and Kegan Paul (1962)
Orlowska, E., Pawlak, Z.: Expressive power of knowledge representation systems. International Journal of Man-Machine Studies 20, 485–500 (1984)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)
Polkowski, L.: Rough mereology: A rough set paradigm for unifying rough set theory and fuzzy set theory. Fundamenta Informaticae 54, 67–88 (2003)
Polkowski, L.: Rough mereology as a link between rough set and fuzzy set theories. a survey. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 253–277. Springer, Heidelberg (2004)
Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15, 333–365 (1996)
Randell, D.A., Cui, Z., Cohn, A.: Naive topology: modeling the force pump. In: Faltings, B., Struss, P. (eds.) Recent Advances in Qualitative Reasoning. MIT Press, Cambridge (1992)
Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) KR 1992. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, San Mateo, California, pp. 165–176. Morgan Kaufmann, San Francisco (1992)
Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus. Artificial Intellegence 108(1-2), 69–123 (1999)
Schockaert, S.: Reasoning about Fuzzy Temporal and Spatial Information from the Web. PhD dissertation. Universiteit Gent, Gent, Belgium (2008)
Schockaert, S., De Cock, M., Kerre, E.: Spatial reasoning in a fuzzy region connection calculus. Artificial Intelligence 173(2), 258–298 (2009)
Segerberg, K.: A note on the logic of elsewhere. Theoria 47, 183–187 (1981)
Smith, B., Varzi, A.C.: Fiat and bona fide boundaries. Philosophy and Phenomenological Research 60(2), 401–420 (2001)
Sturm, H., Suzuki, N.-Y., Wolter, F., Zakharyaschev, M.: Semi-qualitative reasoning about distances: preliminary report. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 37–56. Springer, Heidelberg (2000)
Tarski, A.: Logique, smantique, mta-mathmatique, Vol 1. Armand Colin (1972)
Tuan-Fang, F., Churn-Jung, L., Yiyu, Y.: On modal and fuzzy decision logics based on rough set theory. Fundamenta Informaticae 52, 323–344 (2002)
van Benthem, J.: The Logic of Time. In: Synthese Library, vol. 156. Kluwer Academic Publishers, Dordrecht (1983) (Reidel, revisited and expanded in 1991)
Varzi, A.: Parts, wholes, and part-whole relations: The prospects of mereotopology. The Prospects of Mereotopology, Data and Knowledge Engineering 20, 259–286 (1996)
Venema, Y.: Expessiveness and completeness of an interval tense logic. Notre Dame Journal Formal Logic 31(4), 529–547 (1990)
Venema, Y.: Points, lines and diamonds: a two-sorted modal logic for projective planes. Journal of Logic and Computation 9(5), 601–621 (1999)
Vieu, L.: Semantique des relations spatiales et inferences spatio-temporelles. PhD dissertation. Universite Paul Sabatier, Toulouse (1991)
Wolter, F., Zakharyaschev, M.: Spatial Reasoning in RCC-8 with Boolean Region Terms. In: Horn, W. (ed.) Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000), Berlin, pp. 244–250. IOS Press, Amsterdam (2000)
Wolter, F., Zakharyaschev, M.: Spatial Reasoning in RCC-8 with Boolean Region Terms. In: Horn, W. (ed.) Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000), Berlin, pp. 244–250. IOS Press, Amsterdam (2000)
Cristani, M.: The Complexity of Reasoning about Saptial Congruence. J. Artif. Intell. Res. (JAIR) 11, 361–390 (1999), http://dx.doi.org/10.1613/jair.641
Gerevini, A., Renz, J.: Combining topological and size information for spatial reasoning. Artif. Intell. 137, 1–42 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
de Saint-Cyr, F.D., Papini, O., Prade, H. (2010). An Exploratory Survey of Logic-Based Formalisms for Spatial Information. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds) Methods for Handling Imperfect Spatial Information. Studies in Fuzziness and Soft Computing, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14755-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-14755-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14754-8
Online ISBN: 978-3-642-14755-5
eBook Packages: EngineeringEngineering (R0)