[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Monte Carlo Update for Parametric POMDPs

  • Conference paper
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 66))

Summary

This paper presents the Parameterised POMDP (PPOMDP) algorithm: a method for planning in the space of continuous parameterised functions. The novel contribution is an approach to transitioning parameterised beliefs using Monte Carlo methods. By re-using prediction and observation calculations, the transition function can be computed efficiently. An analysis of scalability suggests that the approach is likely to scale to physically larger environments than algorithms which rely on an underlying discretisation. Experimental results in a simulated robot navigation problem show that the algorithm compares favourably with existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aberdeen, D., Baxter, J.: Scaling internal-state policy-gradient methods for POMDPs. In: Proc. Intl. Conf. on Machine Learning, pp. 3–10 (2002)

    Google Scholar 

  2. Bertsekas, D.: Dynamic Programming and Optimal Control, vol. 1. Athena Scientific, Belmont (2000)

    Google Scholar 

  3. Brooks, A.: Parametric POMDPs for planning in continuous state spaces. Technical Report ACFR-TR-2007001, Australian Centre for Field Robotics, University of Sydney (2007)

    Google Scholar 

  4. Brooks, A., Makarenko, A., Williams, S., Durrant-Whyte, H.: Parametric POMDPs for planning in continuous state spaces. Robotics and Autonomous Systems 54(11), 887–897 (2006)

    Article  Google Scholar 

  5. Durrant-Whyte, H., Bailey, T.: Simultaneous localisation and mapping (SLAM): Part I - the essential algorithms. Robotics and Automation Magazine 13(2), 99–110 (2006)

    Article  Google Scholar 

  6. Gordon, G.: Stable function approximation in dynamic programming. In: Proc. Intl. Conf. on Machine Learning, pp. 261–268 (1995)

    Google Scholar 

  7. Hauskrecht, M.: Value-function approximations for partially observable Markov decision processes. Journal of Artificial Intelligence Research 13, 33–94 (2000)

    MATH  MathSciNet  Google Scholar 

  8. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101, 99–134 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. LaValle, S.: Planning Algortihms. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  10. Moore, D.: Simplicial Mesh Generation with Applications. PhD thesis, Report no. 92-1322, Cornell University (1992)

    Google Scholar 

  11. Nourbakhsh, I., Powers, R., Birchfield, S.: Dervish: An office-navigating robot. AI Magazine 16(2), 53–60 (1995)

    Google Scholar 

  12. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algorithm for POMDPs. In: Proc. Intl. Joint Conf. on Artificial Intelligence, pp. 1025–1032 (2003)

    Google Scholar 

  13. Roy, N.: Finding Approximate POMDP Solutions Through Belief Compression. PhD thesis, Robotics Institute, Carnegie Mellon University (2003)

    Google Scholar 

  14. Spaan, M., Vlassis, N.: Perseus: Randomized point-based value iteration for POMDPs. Journal of Artificial Intelligence research 24, 195–220 (2005)

    MATH  Google Scholar 

  15. Thrun, S.: Monte carlo POMDPs. Advances in Neural Information Processing Systems, 1064–1070 (2000)

    Google Scholar 

  16. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brooks, A., Williams, S. (2010). A Monte Carlo Update for Parametric POMDPs. In: Kaneko, M., Nakamura, Y. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14743-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14743-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14742-5

  • Online ISBN: 978-3-642-14743-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics