[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Connections between Statistical Depth Functions and Fuzzy Sets

  • Conference paper
Combining Soft Computing and Statistical Methods in Data Analysis

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 77))

  • 1627 Accesses

Abstract

We show that two probabilistic interpretations of fuzzy sets via random sets and large deviation principles have a common feature: they regard the fuzzy set as a depth function of a random object. Conversely, some depth functions in the literature can be regarded as the fuzzy sets of central points of appropriately chosen random sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnett, V.: The ordering of multivariate data (with discussion). J. Royal Statist. Soc. A 139, 318–352 (1976)

    Google Scholar 

  2. Cascos, I., López-Díaz, M.: Integral trimmed regions. J. Multivariate Anal. 96, 404–424 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dembo, A., Zeitouni, O.: Large deviations. Techniques and applications, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  4. Huber, P.J.: Robust statistics: a review. Ann. Math. Statist. 43, 1041–1067 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  5. Liu, R., Serfling, R., Souvaine, D.: Data depth: robust multivariate analysis, computational geometry and applications. Amer. Math. Soc., Providence (2006)

    MATH  Google Scholar 

  6. Liu, R.Y.: On a notion of data depth based on random simplices. Ann. Statist. 18, 405–414 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu, R.Y., Singh, K.: A quality index based on data depth and multivariate rank tests. J. Amer. Statist. Assoc. 88, 252–260 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mosler, K.: Multivariate dispersion, central regions and depth. In: The lift zonoid approach. Lect. Notes Statist, vol. 165. Springer, Berlin (2002)

    Google Scholar 

  9. Norberg, T.: Random capacities and their distributions. Probab. Theory Related Fields 73, 281–297 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nguyen, H.T., Bouchon-Meunier, B.: Random sets and large deviations principle as a foundation for possibility measures. Soft Computing 8, 61–70 (2003)

    MATH  Google Scholar 

  11. Puhalski, A.: Large deviations and idempotent probabilities. Chapman and Hall/CRC, Boca Raton (2001)

    Book  Google Scholar 

  12. Terán, P.: A new bridge between fuzzy sets and statistics. In: Proceedings of the Joint 2009 Int. Fuzzy Systems Assoc. World Congress and 2009 Eur. Soc. Fuzzy Logic and Technology Conference, IFSA-EUSFLAT, Lisbon, Portugal, pp. 1887–1891 (2009)

    Google Scholar 

  13. Terán, P.: Centrality as a gradual notion: a new bridge between Fuzzy Sets and Statistics (submitted for publication, 2010)

    Google Scholar 

  14. Terán, P.: Integral central regions and integral depth (Unpublished manuscript)

    Google Scholar 

  15. Zuo, Y., Serfling, R.: General notions of statistical depth function. Ann. Statist. 28, 461–482 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Terán, P. (2010). Connections between Statistical Depth Functions and Fuzzy Sets. In: Borgelt, C., et al. Combining Soft Computing and Statistical Methods in Data Analysis. Advances in Intelligent and Soft Computing, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14746-3_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14746-3_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14745-6

  • Online ISBN: 978-3-642-14746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics