[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Balancing Domain Decomposition Method for a Discretization of a Plate Problem on Nonmatching Grids

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6067))

  • 1372 Accesses

Abstract

In this paper we present a balancing domain decomposition method for solving a discretization of a plate problem on nonmatching grids in 2D. The local discretizations are a Hsieh-Clough-Tocher macro finite elements. On the interfaces between adjacent subdomains two mortar conditions are imposed. The condition number of the preconditioned problem is almost optimal i.e. it is bounded poly-logarithmically with respect to the mesh parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. XI (Paris, 1989–1991), Paris. Pitman Res. Notes Math. Ser., vol. 299, pp. 13–51. Longman Sci. Tech., Harlow (1994)

    Google Scholar 

  2. Bjørstad, P.E., Dryja, M., Rahman, T.: Additive Schwarz methods for elliptic mortar finite element problems. Numer. Math. 95(3), 427–457 (2003)

    Article  MathSciNet  Google Scholar 

  3. Braess, D., Dahmen, W., Wieners, C.: A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37(1), 48–69 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dryja, M., Widlund, O.B.: A generalized FETI-DP method for a mortar discretization of elliptic problems. In: Domain decomposition methods in science and engineering, pp. 27–38. Natl. Auton. Univ. Mex., México (2003)

    Google Scholar 

  5. Dryja, M.: A Neumann-Neumann algorithm for a mortar discetization of elliptic problems with discontinuous coefficients. Numer. Math. 99, 645–656 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kim, H.H., Widlund, O.B.: Two-level Schwarz algorithms with overlapping subregions for mortar finite elements. SIAM J. Numer. Anal. 44(4), 1514–1534 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Xu, X., Li, L., Chen, W.: A multigrid method for the mortar-type Morley element approximation of a plate bending problem. SIAM J. Numer. Anal. 39(5), 1712–1731 (2001/2002)

    Google Scholar 

  8. Marcinkowski, L.: Domain decomposition methods for mortar finite element discretizations of plate problems. SIAM J. Numer. Anal. 39(4), 1097–1114 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Marcinkowski, L.: An Additive Schwarz Method for mortar Morley finite element discretizations of 4th order elliptic problem in 2d. Electron. Trans. Numer. Anal. 26, 34–54 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Marcinkowski, L., Dokeva, N.: A FETI-DP method for mortar finite element discretization of a fourth order problem. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.) Domain decomposition methods in science and engineering XVII. Lect. Notes Comput. Sci. Eng., vol. 60, pp. 583–590. Springer, Berlin (2008)

    Chapter  Google Scholar 

  11. Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comp. 65(216), 1387–1401 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Le Tallec, P.: Neumann-Neumann domain decomposition algorithms for solving 2D elliptic problems with nonmatching grids. East-West J. Numer. Math. 1(2), 129–146 (1993)

    MATH  MathSciNet  Google Scholar 

  13. Pencheva, G., Yotov, I.: Balancing domain decomposition for mortar mixed finite element methods. Numer. Linear Algebra Appl. 10(1-2), 159–180 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tu, X., Li, J.: A balancing domain decomposition method by constraints for advection-diffusion problems. Commun. Appl. Math. Comput. Sci. 3, 25–60 (2008)

    MATH  MathSciNet  Google Scholar 

  15. Marcinkowski, L.: A mortar element method for some discretizations of a plate problem. Numer. Math. 93(2), 361–386 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory. Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)

    MATH  Google Scholar 

  18. Marcinkowski, L.: A balancing Neumann - Neumann method for a mortar finite element discretization of fourth order elliptic problems (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marcinkowski, L. (2010). A Balancing Domain Decomposition Method for a Discretization of a Plate Problem on Nonmatching Grids. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14390-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14390-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14389-2

  • Online ISBN: 978-3-642-14390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics