Abstract
In this paper we present a balancing domain decomposition method for solving a discretization of a plate problem on nonmatching grids in 2D. The local discretizations are a Hsieh-Clough-Tocher macro finite elements. On the interfaces between adjacent subdomains two mortar conditions are imposed. The condition number of the preconditioned problem is almost optimal i.e. it is bounded poly-logarithmically with respect to the mesh parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. XI (Paris, 1989–1991), Paris. Pitman Res. Notes Math. Ser., vol. 299, pp. 13–51. Longman Sci. Tech., Harlow (1994)
Bjørstad, P.E., Dryja, M., Rahman, T.: Additive Schwarz methods for elliptic mortar finite element problems. Numer. Math. 95(3), 427–457 (2003)
Braess, D., Dahmen, W., Wieners, C.: A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37(1), 48–69 (1999)
Dryja, M., Widlund, O.B.: A generalized FETI-DP method for a mortar discretization of elliptic problems. In: Domain decomposition methods in science and engineering, pp. 27–38. Natl. Auton. Univ. Mex., México (2003)
Dryja, M.: A Neumann-Neumann algorithm for a mortar discetization of elliptic problems with discontinuous coefficients. Numer. Math. 99, 645–656 (2005)
Kim, H.H., Widlund, O.B.: Two-level Schwarz algorithms with overlapping subregions for mortar finite elements. SIAM J. Numer. Anal. 44(4), 1514–1534 (2006)
Xu, X., Li, L., Chen, W.: A multigrid method for the mortar-type Morley element approximation of a plate bending problem. SIAM J. Numer. Anal. 39(5), 1712–1731 (2001/2002)
Marcinkowski, L.: Domain decomposition methods for mortar finite element discretizations of plate problems. SIAM J. Numer. Anal. 39(4), 1097–1114 (2001)
Marcinkowski, L.: An Additive Schwarz Method for mortar Morley finite element discretizations of 4th order elliptic problem in 2d. Electron. Trans. Numer. Anal. 26, 34–54 (2007)
Marcinkowski, L., Dokeva, N.: A FETI-DP method for mortar finite element discretization of a fourth order problem. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.) Domain decomposition methods in science and engineering XVII. Lect. Notes Comput. Sci. Eng., vol. 60, pp. 583–590. Springer, Berlin (2008)
Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comp. 65(216), 1387–1401 (1996)
Le Tallec, P.: Neumann-Neumann domain decomposition algorithms for solving 2D elliptic problems with nonmatching grids. East-West J. Numer. Math. 1(2), 129–146 (1993)
Pencheva, G., Yotov, I.: Balancing domain decomposition for mortar mixed finite element methods. Numer. Linear Algebra Appl. 10(1-2), 159–180 (2003)
Tu, X., Li, J.: A balancing domain decomposition method by constraints for advection-diffusion problems. Commun. Appl. Math. Comput. Sci. 3, 25–60 (2008)
Marcinkowski, L.: A mortar element method for some discretizations of a plate problem. Numer. Math. 93(2), 361–386 (2002)
Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory. Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)
Marcinkowski, L.: A balancing Neumann - Neumann method for a mortar finite element discretization of fourth order elliptic problems (in preparation)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marcinkowski, L. (2010). A Balancing Domain Decomposition Method for a Discretization of a Plate Problem on Nonmatching Grids. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14390-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-14390-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14389-2
Online ISBN: 978-3-642-14390-8
eBook Packages: Computer ScienceComputer Science (R0)