[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Sublogarithmic Approximation for Highway and Tollbooth Pricing

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

  • 1534 Accesses

Abstract

An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the collective revenue obtained from all customers. The revenue generated by any customer is equal to the overall price of the edges in her desired path, when this cost falls within her budget; otherwise, that customer will not purchase any edge.

Our main result is a deterministic algorithm for the tollbooth problem on trees whose approximation ratio is O(logm / loglogm), where m denotes the number of edges in the underlying graph. This finding improves on the currently best performance guarantees for trees, due to Elbassioni et al. (SAGT ’09), as well as for paths (commonly known as the highway problem), due to Balcan and Blum (EC ’06). An additional interesting consequence is a computational separation between tollbooth pricing on trees and the original prototype problem of single-minded unlimited supply pricing, under a plausible hardness hypothesis due to Demaine et al. (SODA ’06).

Due to space limitations, some details are omitted from this extended abstract. All missing details are provided in the full version of this paper [11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. Wiley, New York (2000)

    MATH  Google Scholar 

  2. Balcan, M.F., Blum, A.: Approximation algorithms and online mechanisms for item pricing. Theory of Computing 3(1), 179–195 (2007)

    Article  MathSciNet  Google Scholar 

  3. Balcan, M.F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: EC, pp. 50–59 (2008)

    Google Scholar 

  4. Briest, P., Krysta, P.: Single-minded unlimited supply pricing on sparse instances. In: SODA, pp. 1093–1102 (2006)

    Google Scholar 

  5. Cheung, M., Swamy, C.: Approximation algorithms for single-minded envy-free profit-maximization problems with limited supply. In: FOCS, pp. 35–44 (2008)

    Google Scholar 

  6. Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination can be hard: Approximability of the unique coverage problem. SIAM Journal of Computing 38(4), 1464–1483 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Elbassioni, K.M., Raman, R., Ray, S., Sitters, R.: On profit-maximizing pricing for the highway and tollbooth problems. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 275–286. Springer, Heidelberg (2009)

    Google Scholar 

  8. Elbassioni, K.M., Sitters, R., Zhang, Y.: A quasi-PTAS for profit-maximizing pricing on line graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 451–462. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Covering graphs using trees and stars. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 24–35. Springer, Heidelberg (2003)

    Google Scholar 

  10. Frederickson, G.N., Johnson, D.B.: Generating and searching sets induced by networks. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 221–233. Springer, Heidelberg (1980)

    Google Scholar 

  11. Gamzu, I., Segev, D.: A sublogarithmic approximation for highway and tollbooth pricing, http://arxiv.org/abs/1002.2084

  12. Gamzu, I., Segev, D.: An improved approximation algoritm for maximum graph orientation (2010) (in preparation)

    Google Scholar 

  13. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.: On profit-maximizing envy-free pricing. In: SODA, pp. 1164–1173 (2005)

    Google Scholar 

  14. Hartline, J.D., Koltun, V.: Near-optimal pricing in near-linear time. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 422–431. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Hassin, R., Segev, D.: Robust subgraphs for trees and paths. ACM Transactions on Algorithms 2(2), 263–281 (2006)

    Article  MathSciNet  Google Scholar 

  16. Khandekar, R., Kimbrel, T., Makarychev, K., Sviridenko, M.: On hardness of pricing items for single-minded bidders. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 202–216. Springer, Heidelberg (2009)

    Google Scholar 

  17. Krauthgamer, R., Mehta, A., Rudra, A.: Pricing commodities, or how to sell when buyers have restricted valuations. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 1–14. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gamzu, I., Segev, D. (2010). A Sublogarithmic Approximation for Highway and Tollbooth Pricing. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics