[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Generic Human Body Models

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6169))

Included in the following conference series:

Abstract

We describe a posture estimation system based on Organic Computing concepts, which learns a generic body model from video input in a self-governed manner. We show experimentally that the constructed model generalizes well to different attire and persons.

Funding by the DFG (WU 314/5-2, WU 314/5-3) is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Würtz, R.P. (ed.): Organic Computing. Springer, Heidelberg (2008)

    Google Scholar 

  2. Poggio, T., Bizzi, E.: Generalization in vision and motor control. Nature 431, 768–774 (2004)

    Article  Google Scholar 

  3. Walther, T., Würtz, R.P.: Learning to look at humans - what are the parts of a moving body. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, pp. 22–31. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Walther, T., Würtz, R.P.: Unsupervised learning of human body parts from video footage. In: Proceedings of ICCV workshops, Kyoto, pp. 336–343. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  5. Kumar, M.P., Torr, P.H.S., Zisserman, A.: Learning layered motion segmentations of video. International Journal of Computer Vision 76(3), 301–319 (2008)

    Article  Google Scholar 

  6. Bear, M.F., Connors, B.W., Paradiso, M.A.: Neuroscience – Exploring the Brain, 3rd edn. Lippinscott Williams & Wilkins (2006)

    Google Scholar 

  7. Kumar, M.P., Torr, P.H.S., Zisserman, A.: Objcut: Efficient segmentation using top-down and bottom-up cues. IEEE Trans. PAMI 32(3), 530–545 (2009)

    Article  Google Scholar 

  8. Murphy, G.L.: The Big Book of Concepts. The MIT Press, Cambridge (2004)

    Google Scholar 

  9. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  10. Lee, Y.J., Grauman, K.: Shape discovery from unlabeled image collections. In: Proc. CVPR, pp. 2254–2261. IEEE, Los Alamitos (2009)

    Google Scholar 

  11. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. PAMI 14(2), 239–256 (1992)

    Article  Google Scholar 

  12. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. 3rd Intl. Conf. 3D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  13. Eriksen, R.D.: Image processing library 98 (2006), http://www.mip.sdu.dk/ipl98/

  14. Elgammal, A., Muang, C., Hu, D.: Skin detection - a short tutorial (2009)

    Google Scholar 

  15. Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. PAMI 23(8), 800–810 (2001)

    Article  Google Scholar 

  16. Christoudias, C., Georgescu, B., Meer, P.: Synergism in low-level vision. In: Proc. ICPR, Quebec City, Canada, vol. 4, pp. 150–155 (2002)

    Google Scholar 

  17. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vision 61(1), 55–79 (2005)

    Article  Google Scholar 

  18. Sminchisescu, C., Triggs, B.: Kinematic jump processes for monocular 3D human tracking. In: Computer Vision and Pattern Recognition, pp. I:69–76 (2003)

    Google Scholar 

  19. Shotton, J., Blake, A., Cipolla, R.: Efficiently combining contour and texture cues for object recognition. In: British Machine Vision Conference (2008)

    Google Scholar 

  20. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient matching of pictorial structures. In: Proc. ICPR, vol. 2, pp. 66–73 (2000)

    Google Scholar 

  21. Noriega, P., Bernier, O.: Multicues 2D articulated pose tracking using particle filtering and belief propagation on factor graphs. In: Proc. ICPR, pp. 57–60 (2007)

    Google Scholar 

  22. Ferrari, V., Marin-Jimenez, M., Zisserman, A.: Progressive search space reduction for human pose estimation. In: Proc. CVPR, pp. 976–983 (2008)

    Google Scholar 

  23. Niebles, J.C., Han, B., Ferencz, A., Fei-Fei, L.: Extracting moving people from internet videos. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 527–540. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Marcin, E., Vittorio, F.: Better appearance models for pictorial structures. In: Proc. BMVC (September 2009)

    Google Scholar 

  25. Kumar, M.P., Torr, P.H.S., Zisserman, A.: Efficient discriminative learning of parts-based models. In: Proc. ICCV (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walther, T., Würtz, R.P. (2010). Learning Generic Human Body Models. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2010. Lecture Notes in Computer Science, vol 6169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14061-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14061-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14060-0

  • Online ISBN: 978-3-642-14061-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics