[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimistic Arithmetic Operators for Fuzzy and Gradual Intervals - Part II: Fuzzy and Gradual Interval Approach

  • Conference paper
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications (IPMU 2010)

Abstract

This part aims at extending the proposed interval operators detailed in the Part I to fuzzy and gradual intervals. Recently, gradual numbers have been introduced as a means of extending standard interval computation methods to fuzzy and gradual intervals. In this paper, we combine the concepts of gradual numbers and the Midpoint-Radius (MR) representation to extend the interval proposed operators to fuzzy and gradual intervals. The effectiveness of the proposed operators is illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodjanova, S.: Alpha-bounds of fuzzy numbers. Information Sciences 152, 237–266 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boukezzoula, R., Foulloy, L., Galichet, S.: Inverse Controller Design for Interval Fuzzy Systems. IEEE Transactions On Fuzzy Systems 14(1), 111–124 (2006)

    Article  Google Scholar 

  3. Boukezzoula, R., Galichet, S., Foulloy, L.: MIN and MAX Operators for Fuzzy Intervals and their Potential Use in Aggregation Operators. IEEE Trans. on Fuzzy Systems 15(6), 1135–1144 (2007)

    Article  Google Scholar 

  4. Dong, W.M., Wong, F.S.: Fuzzy weighted averages and implementation of the extension principle. Fuzzy Sets and Systems (21), 183–199 (1987)

    Google Scholar 

  5. Dubois, D., Prade, H.: Operations on fuzzy numbers. Journal of Systems Science (9), 613–626 (1978)

    Google Scholar 

  6. Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft Comput. 12(2), 165–175 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy interval analysis. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series, pp. 483–581. Kluwer, Boston (2000)

    Google Scholar 

  8. Fortin, J., Dubois, D., Fargier, H.: Gradual numbers and their application to fuzzy interval analysis. IEEE Trans. on Fuzzy Systems 16(2), 388–402 (2008)

    Article  Google Scholar 

  9. Giachetti, R.E., Young, R.E.: A parametric representation of fuzzy numbers and their arithmetic operators. Fuzzy Sets and Systems 91(2), 185–202 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Giachetti, R.E., Young, R.E.: Analysis of the error in the standard approximation used for multiplication of triangular and trapezoidal fuzzy numbers and the development of a new approximation. Fuzzy Sets and Systems 91, 1–13 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hukuhara, M.: Integration des applications measurables dont la valeur est compact convexe. Funkcialaj Ekvacioj 10, 205–223 (1967)

    Google Scholar 

  12. Kasperski, A., Zielinski, P.: Using Gradual Numbers for Solving Fuzzy-Valued Combinatorial Optimization Problems. In: Proc. of the 12th international Fuzzy Systems Association world congress (IFSA), Cancun, Mexico, pp. 656–665 (2007)

    Google Scholar 

  13. Kaufmann, A., Gupta, M.M.: Introduction to fuzzy arithmetic: Theory and Applications. Van Nostrand Reinhold Company Inc., New York (1991)

    MATH  Google Scholar 

  14. Lodwick, W.A., Jamison, K.D.: Special issue: interfaces between fuzzy set theory and interval analysis. Fuzzy Sets and Systems 135(1), 1–3 (2003)

    Article  MathSciNet  Google Scholar 

  15. Mizumoto, M., Tanaka, K.: The four operations of arithmetic on fuzzy numbers. Systems Comput. Controls 7(5), 73–81 (1976)

    MathSciNet  Google Scholar 

  16. Mizumoto, M., Tanaka, K.: Some properties of fuzzy numbers. In: Gupta, M.M., Ragade, R.K., Yager, R.R. (eds.) Advances in Fuzzy Sets theory and Applications, pp. 156–164. North-Holland, Amsterdam (1979)

    Google Scholar 

  17. Moore, R., Lodwick, W.: Interval analysis and fuzzy set theory. Fuzzy Sets and Systems 135(1), 5–9 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Oussalah, M., De Schutter, J.: Approximated fuzzy LR computation. Information Sciences 153, 155–175 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stefanini, L., Bede, B.: Generalization of Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis 71, 1311–1328 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stefanini, L.: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy sets and systems (2009), doi:10.1016/j.fss.2009.06.009

    Google Scholar 

  21. Yager, R.R.: On the lack of inverses in fuzzy arithmetic. Fuzzy Sets and Systems, 73–82 (1980)

    Google Scholar 

  22. Zadeh, L.A.: Fuzzy Sets. J. Information and Control (8), 338–353 (1965)

    Google Scholar 

  23. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Information Sci., Part I: 8, 199–249; Part II: 8, 301–357; Part III: 9, 43–80 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boukezzoula, R., Galichet, S. (2010). Optimistic Arithmetic Operators for Fuzzy and Gradual Intervals - Part II: Fuzzy and Gradual Interval Approach. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. IPMU 2010. Communications in Computer and Information Science, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14058-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14058-7_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14057-0

  • Online ISBN: 978-3-642-14058-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics