[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Effect of Corner Information in Simultaneous Placement of K Rectangles and Tableaux

  • Conference paper
Computing and Combinatorics (COCOON 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6196))

Included in the following conference series:

  • 963 Accesses

Abstract

We consider the optimization problem of finding k nonintersecting rectangles and tableaux in n ×n pixel plane where each pixel has a real valued weight. We discuss existence of efficient algorithms if a corner point of each rectangle/tableau is specified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asano, T., Chen, D.Z., Katoh, N., Tokuyama, T.: Efficient Algorithms for Optimization-Based Image Segmentation. Int. J. Comput. Geometry Appl. 11(2), 145–166 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bae, S.E., Takaoka, T.: Improved Algorithms for the K-Maximum Subarray Problem. The Computer Journal 49(3), 358–374 (2006)

    Article  Google Scholar 

  3. Bae, S.E., Takaoka, T.: A Sub-Cubic Time Algorithm for the K-Maximum Subarray Problem. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 751–762. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bae, S.E., Takaoka, T.: Algorithms for K-Disjoint Maximum Subarrays. Int. J. Found. Comput. Sci. 18(2), 319–339 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bentley, J.: Algorithm Design Techniques. ACM Commu. 27(9), 865–871 (1984); Also found in Bentley, J.: Programming Pearls, 2nd edn. ACM Press, New York (2000)

    Google Scholar 

  6. Chen, D.Z., Chun, J., Katoh, N., Tokuyama, T.: Efficient algorithms for approximating a multi-dimensional voxel terrain by a unimodal terrain. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 238–248. Springer, Heidelberg (2004)

    Google Scholar 

  7. Chen, D.Z., Hu, X.S., Luan, S., Wu, X., Yu, C.X.: Optimal Terrain Construction Problems and Applications in Intensity-Modulated Radiation Therapy. Algorithmica 42(3-4), 265–288 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chun, J., Kasai, R., Korman, M., Tokuyama, T.: Algorithms for Computing the Maximum Weight Region Decomposable into Elementary Shapes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1166–1174. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Chun, J., Korman, M., Nöllenburg, M., Tokuyama, T.: Consistent Digital Rays. In: Proc. 24th ACM SoCG, pp.355–364 (2008)

    Google Scholar 

  10. Formann, M., Wanger, F.: A Packing Probelm with Applications to Lettering of Maps. In: Proc. 7th ACM SoCG, pp. 281–290 (1991)

    Google Scholar 

  11. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data Mining with optimized two-dimensional association rules. ACM Trans. Database Syst. 26(2), 179–213 (2001)

    Article  MATH  Google Scholar 

  12. Iturriaga, C.: Map Labeling Problems, Ph. D Thesis, Waterloo University (1999)

    Google Scholar 

  13. Koike, A., Nakano, S.-I., Nishizeki, T., Tokuyama, T., Watanabe, S.: Labeling Points with Rectangles of Various Shapes. Int. J. Comput. Geometry Appl. 12(6), 511–528 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Korman, M.: Theory and Applications of Geometric Optimization Problems in Rectilinear Metric Spaces, Ph. D Thesis, Tohoku University (2009)

    Google Scholar 

  15. Soltan, V., Gorpinevich, A.: Minimum Dissection of a Rectilinear Polygon with Arbitrary Holes into Rectangles. Disc. Comput. Geom. 9, 57–79 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tamaki, H., Tokuyama, T.: Algorithms for the Maximum Subarray Problem Based on Matrix Multiplication. In: Proc. 9th SODA, pp. 446–452 (1998)

    Google Scholar 

  17. Yoda, K., Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Computing Optimized Rectilinear Regions for Association Rules. In: Proc. KDD 1997, pp. 96–103 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anzai, S., Chun, J., Kasai, R., Korman, M., Tokuyama, T. (2010). Effect of Corner Information in Simultaneous Placement of K Rectangles and Tableaux. In: Thai, M.T., Sahni, S. (eds) Computing and Combinatorics. COCOON 2010. Lecture Notes in Computer Science, vol 6196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14031-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14031-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14030-3

  • Online ISBN: 978-3-642-14031-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics