[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Imbalance Is Fixed Parameter Tractable

  • Conference paper
Computing and Combinatorics (COCOON 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6196))

Included in the following conference series:

  • 963 Accesses

Abstract

In the Imbalance Minimization problem we are given a graph G = (V,E) and an integer b and asked whether there is an ordering v 1 ...v n of V such that the sum of the imbalance of all the vertices is at most b. The imbalance of a vertex v i is the absolute value of the difference between the number of neighbors to the left and right of v i . The problem is also known as the Balanced Vertex Ordering problem and it finds many applications in graph drawing. We show that this problem is fixed parameter tractable and provide an algorithm that runs in time 2O(b logb) ·n O(1). This resolves an open problem of Kára et al. [COCOON 2005].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: UAI, pp. 7–15 (2001)

    Google Scholar 

  2. Biedl, T.C., Chan, T.M., Ganjali, Y., Hajiaghayi, M.T., Wood, D.R.: Balanced vertex-orderings of graphs. Discrete Applied Mathematics 148(1), 27–48 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)

    Google Scholar 

  7. Flum, J., Grohe, M.: Parameterized complexity theory. In: Texts in Theoretical Computer Science. An EATCS Series, Springer, Berlin (2006)

    Google Scholar 

  8. Gaspers, S., Messinger, M.-E., Nowakowski, R.J., Pralat, P.: Clean the graph before you draw it? Inf. Process. Lett. 109(10), 463–467 (2009)

    Article  MathSciNet  Google Scholar 

  9. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theor. Comput. Sci. 172(1-2), 175–193 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kára, J., Kratochvíl, J., Wood, D.R.: On the complexity of the balanced vertex ordering problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 849–858. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Kára, J., Kratochvíl, J., Wood, D.R.: On the complexity of the balanced vertex ordering problem. Discrete Mathematics & Theoretical Computer Science 9(1) (2007)

    Google Scholar 

  13. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Inf. Process. Lett. 42(6), 345–350 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kirousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Discrete Mathematics 55(2), 181–184 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  16. Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings. Comput. Geom. 9(1-2), 83–110 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth i: A linear time fixed parameter algorithm. J. Algorithms 56(1), 1–24 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth ii: Algorithms for partial w-trees of bounded degree. J. Algorithms 56(1), 25–49 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wood, D.R.: Optimal three-dimensional orthogonal graph drawing in the general position model. Theor. Comput. Sci. 1-3(299), 151–178 (2003)

    Article  Google Scholar 

  20. Wood, D.R.: Minimising the number of bends and volume in 3-dimensional orthogonal graph drawings with a diagonal vertex layout. Algorithmica 39(3), 235–253 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lokshtanov, D., Misra, N., Saurabh, S. (2010). Imbalance Is Fixed Parameter Tractable. In: Thai, M.T., Sahni, S. (eds) Computing and Combinatorics. COCOON 2010. Lecture Notes in Computer Science, vol 6196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14031-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14031-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14030-3

  • Online ISBN: 978-3-642-14031-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics