Abstract
Robot’s vision plays a significant role in human-robot interaction, e.g., face recognition, expression understanding, motion tracking, etc. Building a strong vision system for the robot, therefore, is one of the fundamental issues behind the success of such an interaction. Edge detection, which is known as the basic units for measuring the strength of any vision system, has recently been taken attention from many groups of robotic researchers. Most of the reported works surrounding this issue have been based on designing a static mask, which sequentially move through the pixels in the image to extract edges. Despite the success of these works, such statically could restrict the model’s performance in some domains. Designing a dynamic mask by the inspiration from the basic principle of “retina”, and which supported by a unique distribution of photoreceptor, therefore, could overcome this problem. A human-like robot (RobovieR-2) has been used to examine the validity of the proposed model. The experimental results show the validity of the model, and it is ability to offer a number of advantages to the robot, such as: accurate edge detection and better attention to the front user, which is a step towards human-robot interaction.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. The MIT Press, Cambridge (2008)
Manian, V., Vasquez, R.: Multiresolution edge detection algorithm applied to SAR images. In: IEEE Geoscience and Remote Sensing Symposium, vol. 2, pp. 1291–1293 (1999)
Rydberg, A., Borgefors, G.: Extracting multispectral edges in satellite images over agricultural fields. In: Proceedings of International Conference on Image Analysis and Processing, pp. 786–791 (1999)
Tewfik, A.H., Assaad, F.A., Deriche, M.: Edge detection using spectral estimation techniques. In: The 6th Multidimensional Signal Processing Workshop, pp. 34–35 (1989)
Stewein, J.C., Ferris, T.L.J.: The asterisk operator. An edge detection operator addressing the problem of clean edges in bone X-ray images. In: Proceedings of the Second International Conference on Knowledge Based Intelligent Electronic Systems, vol. 3, pp. 28–31 (1998)
Karantzalos, K., Argialas, D.: Improving Edge Detection And Watershed Segmentation With Anisotropic Diffusion and Morphological Levellings. International Journal of Remote Sensing 27, 5427–5434 (2006)
Meylan, L., Alleysson, D., Susstrunk, S.: A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images. Journal of the Optical Society of America A (JOSA A) 24, 2807–2816 (2007)
Sobel, I., Feldman, G.: A 3x3 Isotropic Gradient Operator for Image Processing: presented at a talk at the Stanford Artificial Project (unpublished but often cited) (1968)
Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)
Resko, B., Roka, A., Csapo, A., Baranyi, P.: Edge Detection Model Based on Involuntary Tremors and Drifts of the Eye. Journal of Advanced Computational Intelligence and Intelligent Informatics 11, 648–654 (2007)
Becerikli, Y., Engin, H.: Alternative Neural Network Based Edge Detection. Neural Information Processing 10, 193–199 (2006)
Metta, G.: An Attentional System for a Humanoid Robot Exploiting Space Variant Vision. In: IEEE-RAS International Conference on Humanoid Robots, Tokyo, Japan, pp. 359–366 (2001)
Kolesnik, M., Barlit, A., Zubkov, E.: Iterative Tuning of Simple Cells for Contrast Invariant Edge Enhancement. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 27–37. Springer, Heidelberg (2002)
Verweij, J., Hornstein, E.P., Schnapf, J.L.: Surround Antagonism in Macaque Cone Photoreceptors. The Journal of Neuroscience 268, 1053–1056 (2003)
Dacey, D.: Primate Retina: Cell Types, Circuits and Colour Opponency. Progress in Retinal and Eye Research 19, 647–648 (2000)
Institute of Neurosciences (INMHA), http://thebrain.mcgill.ca
Microsoft, http://www.microsoft.com/speech/default.mspx
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hafiz, A.R., Alnajjar, F., Murase, K. (2009). A New Dynamic Edge Detection toward Better Human-Robot Interaction. In: Kim, JH., et al. Advances in Robotics. FIRA 2009. Lecture Notes in Computer Science, vol 5744. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03983-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-03983-6_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03982-9
Online ISBN: 978-3-642-03983-6
eBook Packages: Computer ScienceComputer Science (R0)