Abstract
Recently, a new generation of adaptive Process-Aware Information Systems (PAISs) has emerged, which enables structural process changes during runtime. Such flexibility, in turn, leads to a large number of process variants derived from the same model, but differing in structure. Generally, such variants are expensive to configure and maintain. This paper provides a heuristic search algorithm which fosters learning from past process changes by mining process variants. The algorithm discovers a reference model based on which the need for future process configuration and adaptation can be reduced. It additionally provides the flexibility to control the process evolution procedure, i.e., we can control to what degree the discovered reference model differs from the original one. As benefit, we cannot only control the effort for updating the reference model, but also gain the flexibility to perform only the most important adaptations of the current reference model. Our mining algorithm is implemented and evaluated by a simulation using more than 7000 process models. Simulation results indicate strong performance and scalability of our algorithm even when facing large-sized process models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bae, J., Liu, L., Caverlee, J., Rouse, W.B.: Process mining, discovery, and integration using distance measures. In: ICWS 2006, pp. 479–488 (2006)
Alves de Medeiros, A.K.: Genetic Process Mining. PhD thesis, Eindhoven University of Technology, NL (2006)
Günther, C.W., Rinderle-Ma, S., Reichert, M., van der Aalst, W.M.P., Recker, J.: Using process mining to learn from process changes in evolutionary systems. Int’l Journal of Business Process Integration and Management 3(1), 61–78 (2008)
Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process lifecycle. In: Proc. 10th Int’l Conf. on Enterprise Information Systems (ICEIS 2008), pp. 154–161 (2008)
Li, C., Reichert, M., Wombacher, A.: Discovering reference process models by mining process variants. In: ICWS 2008, pp. 45–53. IEEE Computer Society Press, Los Alamitos (2008)
Li, C., Reichert, M., Wombacher, A.: Mining process variants: Goals and issues. In: IEEE SCC (2), pp. 573–576. IEEE Computer Society Press, Los Alamitos (2008)
Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based on high-level change operations. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 248–264. Springer, Heidelberg (2008)
Li, C., Reichert, M., Wombacher, A.: A heuristic approach for discovering reference models by mining process model variants. Technical Report TR-CTIT-09-08, University of Twente, NL (2009)
Li, C., Reichert, M., Wombacher, A.: What are the problem makers: Ranking activities according to their relevance for process changes. In: ICWS 2009. IEEE Computer Society Press, Los Alamitos (to appear, 2009)
Luger, G.F.: Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Pearson Education, London (2005)
Reichert, M., Dadam, P.: ADEPTflex -supporting dynamic changes of workflows without losing control. J. of Intelligent Information Sys. 10(2), 93–129 (1998)
Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with ADEPT2. In: ICDE 2005, pp. 1113–1114. IEEE Computer Society Press, Los Alamitos (2005)
Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, Boca Raton (2004)
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Reading (2005)
van der Aalst, W.M.P., Basten, T.: Inheritance of workflows: an approach to tackling problems related to change. Theor. Comput. Sci. 270(1-2), 125–203 (2002)
van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)
Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features - enhancing flexibility in process-aware information systems. Data and Knowledge Engineering 66(3), 438–466 (2008)
Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing integrated life cycle support in process-aware information systems. Int’l Journal of Cooperative Information Systems (IJCIS), 19(1) (2009)
Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-based data using little thumb. Integr. Com.-Aided Eng. 10(2), 151–162 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, C., Reichert, M., Wombacher, A. (2009). Discovering Reference Models by Mining Process Variants Using a Heuristic Approach. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds) Business Process Management. BPM 2009. Lecture Notes in Computer Science, vol 5701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03848-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-03848-8_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03847-1
Online ISBN: 978-3-642-03848-8
eBook Packages: Computer ScienceComputer Science (R0)