Abstract
This paper presents a comparative study on five feature selection heuristics applied to a retinal image database called DRIVE. Features are chosen from a feature vector (encoding local information, but as well information from structures and shapes available in the image) constructed for each pixel in the field of view (FOV) of the image. After selecting the most discriminatory features, an AdaBoost classifier is applied for training. The results of classifications are used to compare the effectiveness of the five feature selection methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging 8(3), 263–269 (1989)
Dash, M., Liu, H.: Consistency-based search in feature selection. Artificial Intelligence 151, 155–176 (2003)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Ghiselli, E.E.: Theory of psychological measurement. McGraw-Hill, New York (1964)
Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)
Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine learning. In: Proc. 17th International Conference on Machine Learning, pp. 359–366 (2000)
Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging 19(3), 203–210 (2000)
Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1), 131–137 (2003)
Lindeberg, T.: Edge detection and ridge detection with automatic scale seletion. Int. J. Comp. Vis. 30, 117–156 (1998)
Liu, H., Li, J., Wong, L.: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Informatics 13, 51–60 (2002)
Martínez-Pérez, M., Hughes, A., Stanton, A., Thom, S., Bharath, A., Parker, K.: Scale-space analysis for the characterisation of retinal blood vessels. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 1999, pp. 90–97 (1999)
Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., Abràmoff, M.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: SPIE Medical Imaging, vol. 5370, pp. 648–656 (2004)
Sinthanayothin, C., Boyce, F., Cook, L., Williamson, H.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83, 902–910 (1999)
Soares, V.J., Leandro, J.J., Cesar, R.M.J., Jelinek, F.H., Cree, M.J.: Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging 25(9), 1214–1222 (2006)
Sofka, M., Stewart, C.V.: Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Transactions on Medical Imaging 25(12), 1531–1546 (2006)
Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4), 501–509 (2004)
Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing 10(7), 1010–1019 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lupaşcu, C.A., Tegolo, D., Trucco, E. (2009). A Comparative Study on Feature Selection for Retinal Vessel Segmentation Using FABC. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_80
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)