Abstract
Automatically partitioning images into regions (‘segmentation’) is challenging in terms of quality and performance. We propose a Minimum Spanning Tree-based algorithm with a novel graph-cutting heuristic, the usefulness of which is demonstrated by promising results obtained on standard images. In contrast to data-parallel schemes that divide images into independently processed tiles, the algorithm is designed to allow parallelisation without truncating objects at tile boundaries. A fast parallel implementation for shared-memory machines is shown to significantly outperform existing algorithms. It utilises a new microarchitecture-aware single-pass sort algorithm that is likely to be of independent interest.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vanhamel, I., et al.: Scale Space Segmentation of Color Images Using Watersheds and Fuzzy Region Merging. In: ICIP (1), pp. 734–737 (2001)
Comaniciu, D., Meer, P.: Mean Shift Analysis and Applications. In: ICCV, pp. 1197–1203 (1999)
Wassenberg, J., Bulatov, D., Middelmann, W., Sanders, P.: Determination of Maximally Stable Extremal Regions in Large Images. In: Signal Processing, Pattern Recognition, and Applications (February 2008)
Felzenszwalb, P., Huttenlocher, D.: Efficient Graph-Based Image Segmentation. IJCV 59(2), 167–181 (2004)
Haralick, R., Shapiro, L.: Image Segmentation Techniques. CVGIP 29, 100–132 (1985)
Thomas, C., Ranchin, T., Wald, L., Chanussot, J.: Synthesis of Multispectral Images to High Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing Physics. IEEE Trans. Geoscience and Remote Sensing 46(5), 1301–1312 (2008)
Canny, J.: A Computational Approach to Edge Detection. In: RCV 1987, pp. 184–203 (1987)
Shin, D.H., Park, R.H., Yang, S., Jung, J.H.: Block-Based Noise Estimation Using Adaptive Gaussian Filtering. IEEE Trans. Consum. Electron. 51, 218–226 (2005)
Amer, A., Dubois, E.: Fast and Reliable Structure-Oriented Video Noise Estimation. IEEE Trans. Circuits Syst. Video Techn. 15(1), 113–118 (2005)
Weber, A.: The USC-SIPI Image Database, http://sipi.usc.edu/database/ (accessed 2008-10-06)
Buades, A., Coll, B., Morel, J.: The Staircasing Effect in Neighborhood Filters and its Solution. IEEE Trans. Image Processing 15(6), 1499–1505 (2006)
Dial, G., Bowen, H., Gerlach, F., Grodecki, J., Oleszczuk, R.: IKONOS satellite, imagery, and products. Remote Sensing of Environment 88(1-2), 23–36 (2003)
Sutter, H.: The Free Lunch is Over: A Fundamental Turn Toward Concurrency. Dr. Dobb’s Journal (March 2005)
Osipov, V., Sanders, P., Singler, J.: The Filter-Kruskal Minimum Spanning Tree Algorithm. In: Finocchi, I., Hershberger, J. (eds.) ALENEX, pp. 52–61. SIAM, Philadelphia (2009)
Wassenberg, J., Middelmann, W., Sanders, P.: An Efficient Parallel Algorithm for Graph-Based Image Segmentation (June 2009), http://algo2.iti.uni-karlsruhe.de/wassenberg/wassenberg09parallelSegmentation.pdf
Zunic, J., Sladoje, N.: Efficiency of Characterizing Ellipses and Ellipsoids by Discrete Moments. IEEE Trans. Pattern Anal. Mach. Intell. 22(4), 407–414 (2000)
Nistér, D., Stewénius, H.: Linear Time Maximally Stable Extremal Regions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 183–196. Springer, Heidelberg (2008)
Harfst, G., Reingold, E.: A Potential-Based Amortized Analysis of the Union-Find Data Structure. SIGACT 31, 86–95 (2000)
Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 568–580. Springer, Heidelberg (2006)
Robust Image Understanding Lab: EDISON System, http://www.caip.rutgers.edu/riul/research/code/EDISON/doc/segm.html (accessed 2008-09-23)
Felzenszwalb, P.: Efficient Graph-Based Image Segmentation (March 2007), http://people.cs.uchicago.edu/~pff/segment/ (accessed 2008-01-11)
Besedin, D.: RightMark Memory Analyzer, http://cpu.rightmark.org (accessed 2009-01-09)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wassenberg, J., Middelmann, W., Sanders, P. (2009). An Efficient Parallel Algorithm for Graph-Based Image Segmentation. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_122
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_122
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)