[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Enhanced Statistical Approach to Identifying Photorealistic Images

  • Conference paper
Digital Watermarking (IWDW 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5703))

Included in the following conference series:

Abstract

Computer graphics identification has gained importance in digital era as it relates to image forgery detection and enhancement of high photorealistic rendering software. In this paper, statistical moments of 1-D and 2-D characteristic functions are employed to derive image features that can well capture the statistical differences between computer graphics and photographic images. YCbCr color system is selected because it has shown better performance in computer graphics classification than RGB color system and it has been adopted by the most popularly used JPEG images. Furthermore, only Y and Cb color channels are used in feature extraction due to our study showing features derived from Cb and Cr are so highly correlated that no need to use features extracted from both Cb and Cr components, which substantially reduces computational complexity. Concretely, in each selected color component, features are extracted from each image in both image pixel 2-D array and JPEG 2-D array (an 2-D array consisting of the magnitude of JPEG coefficients), their prediction-error 2-D arrays, and all of their three-level wavelet subbands, referred to as various 2-D arrays generated from a given image in this paper. The rationale behind using prediction-error image is to reduce the influence caused by image content. To generate image features from 1-D characteristic functions, the various 2-D arrays of a given image are the inputs, yielding 156 features in total. For the feature generated from 2-D characteristic functions, only JPEG 2-D array and its prediction-error 2-D array are the inputs, one-unit-apart 2-D histograms of the JPEG 2-D array along the horizontal, vertical and diagonal directions are utilized to generate 2-D characteristic functions, from which the marginal moments are generated to form 234 features. Together, the process then results in 390 features per color channel, and 780 features in total Finally, Boosting Feature Selection (BFS) is used to greatly reduce the dimensionality of features while boosts the machine learning based classification performance to fairly high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ianeva, T., de Vries, A., Rohrig, H.: Detecting cartoons: a case study in automatic video-genre classification. In: Proceeding of IEEE International Conference on Multimedia and Expro (ICME 2003), vol. 1, pp. 449–452 (2003)

    Google Scholar 

  2. Lyu, S., Farid, H.: How realistic is photorealistic? IEEE Transactions on Signal Processing 53, 845–850 (2005)

    Article  MathSciNet  Google Scholar 

  3. Ng, T.-T., Chang, S.-F., Hsu, J., Xie, L., Tsui, M.-P.: Physics-motivated features for distinguishing photographic images and computer graphics. In: Proceeding of ACM Multimedia, Singapore (November 2005)

    Google Scholar 

  4. Chen, W., Shi, Y.Q., Xuan, G.: Identifying computer graphics using HSV color model and statistical moments of characteristic functions. In: Proceeding of IEEE International Conference on Multimedia and Expo. (ICME 2007), Beijing, China, July 2-5 (2007)

    Google Scholar 

  5. Chen, W.: Detection of Digital Image and Video Forgeries, Ph.D. Dissertation, Department of Electrical and Computer Engineering, New Jersey Institute of Technology (2008)

    Google Scholar 

  6. Shi, Y.Q., Xuan, G., Zou, D., Gao, J., Yang, C., Zhang, Z., Chai, P., Chen, W., Chen, C.: Steganalysis based on moments of characteristic functions using wavelet decomposition, prediction-error image, and neural network. In: Proceeding of International Conference on Multimedia and Expo. (ICME 2005), Amsterdam, Netherlands (2005)

    Google Scholar 

  7. Chen, C., Shi, Y.Q., Chen, W., Xuan, G.: Statistical moments based universal steganalysis using JPEG-2D array and 2-D characteristic function. In: Proceeding of Proceeding of IEEE International Conference on Image Processing (ICIP 2006), Atlanta, Georgia (2006)

    Google Scholar 

  8. Leon-Garcia, A.: Probability and Random Processes for Electrical Engineering, 2nd edn. Addison-Wesley Publishing Company, Reading (1994)

    MATH  Google Scholar 

  9. Pratt, W.K.: Digital Image Processing, 3rd edn. John Wiley & Sons, Inc., Chichester (2001)

    Book  MATH  Google Scholar 

  10. Columbia University DVMM Research Lab: Columbia Photographic Images and Photorealistic Computer Graphics Dataset

    Google Scholar 

  11. http://www.creative-3d.net , http://www.creative-3d.net and

  12. Abe, S.: Support Vector Machines for Pattern Classification, 1st edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  13. Friedma, F., Hastie, T.: Additive logistic regression: a statistical view of boosting. An Official Journal of the Institute of Mathematical Statistics (2002)

    Google Scholar 

  14. Tieu, K., Viola, P.: Boosting image retrieval. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sutthiwan, P., Ye, J., Shi, Y.Q. (2009). An Enhanced Statistical Approach to Identifying Photorealistic Images. In: Ho, A.T.S., Shi, Y.Q., Kim, H.J., Barni, M. (eds) Digital Watermarking. IWDW 2009. Lecture Notes in Computer Science, vol 5703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03688-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03688-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03687-3

  • Online ISBN: 978-3-642-03688-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics