[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimal Threshold Policies for Multivariate Stopping-Time POMDPs

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5590))

Abstract

This paper deals with the solving multivariate partially observed Markov decision process (POMDPs). We give sufficient conditions on the cost function, dynamics of the Markov chain target and observation probabilities so that the optimal scheduling policy has a threshold structure with respect to the multivariate TP2 ordering. We present stochastic approximation algorithms to estimate the parameterized threshold policy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Krishnamurthy, V., Djonin, D.: Structured threshold policies for dynamic sensor scheduling–a partially observed Markov decision process approach. IEEE Trans. Signal Proc. 55(10), 4938–4957 (2007)

    Article  Google Scholar 

  2. Moran, W., Suvorova, S., Howard, S.: Application of sensor scheduling concepts to radar. In: Hero, A., Castanon, D., Cochran, D., Kastella, K. (eds.) Foundations and Applications for Sensor Management, pp. 221–256. Springer, Heidelberg (2006)

    Google Scholar 

  3. Evans, R., Krishnamurthy, V., Nair, G.: Networked sensor management and data rate control for tracking maneuvering targets. IEEE Trans. Signal Proc. 53(6), 1979–(1991)

    Article  Google Scholar 

  4. Lovejoy, W.: Some monotonicity results for partially observed Markov decision processes. Operations Research 35(5), 736–743 (1987)

    Article  MATH  Google Scholar 

  5. Rieder, U.: Structural results for partially observed control models. Methods and Models of Operations Research 35, 473–490 (1991)

    Article  MATH  Google Scholar 

  6. Krishnamurthy, V.: Algorithms for optimal scheduling and management of hidden Markov model sensors. IEEE Trans. Signal Proc. 50(6), 1382–1397 (2002)

    Article  Google Scholar 

  7. Krishnamurthy, V., Wahlberg, B.: POMDP multiarmed bandits – structural results. Mathematics of Operations Research (May 2009)

    Google Scholar 

  8. Lovejoy, W.: On the convexity of policy regions in partially observed systems. Operations Research 35(4), 619–621 (1987)

    Article  MATH  Google Scholar 

  9. Spall, J.: Introduction to Stochastic Search and Optimization. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  10. Gantmacher, F.: Matrix Theory, vol. 2. Chelsea Publishing Company, New York (1960)

    Google Scholar 

  11. Karlin, S., Rinott, Y.: Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. Journal of Multivariate Analysis 10, 467–498 (1980)

    Article  MATH  Google Scholar 

  12. Topkis, D.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krishnamurthy, V. (2009). Optimal Threshold Policies for Multivariate Stopping-Time POMDPs. In: Sossai, C., Chemello, G. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2009. Lecture Notes in Computer Science(), vol 5590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02906-6_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02906-6_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02905-9

  • Online ISBN: 978-3-642-02906-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics