[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Handling Analogical Proportions in Classical Logic and Fuzzy Logics Settings

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5590))

Abstract

Analogical proportions are statements of the form ”A is to B as C is to D” which play a key role in analogical reasoning. We propose a logical encoding of analogical proportions in a propositional setting, which is then extended to different fuzzy logics. Being in an analogical proportion is viewed as a quaternary connective relating four propositional variables. Interestingly enough, the fuzzy formalizations that are thus obtained parallel numerical models of analogical proportions. Potential applications to case-based reasoning and learning are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. Artificial Intelligence Com., 39–59 (1994)

    Google Scholar 

  2. Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: a classification rule for binary and nominal data. In: Veloso, M. (ed.) Proc. IJCAI 2007, pp. 678–683. AAAI Press, Menlo Park (2007)

    Google Scholar 

  3. Bouchon-Meunier, B., Valverde, L.: A fuzzy approach to analogical reasoning. Soft Computing 3, 141–147 (1999)

    Article  Google Scholar 

  4. Dubois, D., Esteva, F., Garcia, P., Godo, L., Lopez de Mantaras, R., Prade, H.: Fuzzy modelling of cased-based reasoning and decision. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 599–610. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Dubois, D., Hüllermeier, E., Prade, H.: Fuzzy set-based methods in instance-based reasoning. IEEE Trans. on Fuzzy Systems 10, 322–332 (2002)

    Article  Google Scholar 

  6. Evans, T.: A heuristic program to solve geometry analogy problem. In: Minsky, M. (ed.) Semantic Information Processing. MIT Press, Cambridge (1968)

    Google Scholar 

  7. Gentner, D., Kurtz, K.J.: Relations, objects, and the composition of analogies. Cognitive Science 30, 609–642 (2006)

    Article  Google Scholar 

  8. Hirowatari, E., Arikawa, S.: Incorporating explanation-based generalization with analogical reasoning. Bulletin of Informatics and Cybernetics 26, 13–33 (1994)

    MATH  Google Scholar 

  9. Hüllermeier, E., Dubois, D., Prade, H.: Model adaptation in possibilistic instance-based reasoning. IEEE Trans. on Fuzzy Systems 10, 333–339 (2002)

    Article  Google Scholar 

  10. Klein, S.: Culture, mysticism and social structure and the calculation of behavior. In: Proc. Europ. Conf. on Artificial Intelligence (ECAI 1982), pp. 141–146 (1982)

    Google Scholar 

  11. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Acad. Publ., Dordrecht (2000)

    Book  MATH  Google Scholar 

  12. Kling, R.E.: A paradigm for reasoning by analogy. Artif. Intellig. 2, 147–178 (1971)

    Article  MATH  Google Scholar 

  13. Lepage, Y.: De l’analogie rendant compte de la commutation en linguistique. Habilitation (2003), http://www.slt.atr.jp/~lepage/pdf/dhdryl.pdf

  14. Lieber, J.: Application of the revision theory to adaptation in case-based reasoning: The conservative adaptation. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp. 239–253. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Miclet, L., Delhay, A.: Analogical dissimilarity: definition, algorithms and first experiments in machine learning. Technical Report 5694, INRIA (September 2005)

    Google Scholar 

  16. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  17. Polya, G.: Mathematics and Plausible Reasoning. Patterns of Plausible Inference, vol. II. Princeton University Press, Princeton (1954)

    MATH  Google Scholar 

  18. Sowa, J.F., Majumdar, A.K.: Analogical reasoning. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, pp. 16–36. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Stroppa, N., Yvon, F.: Analogical learning and formal proportions: Definitions and methodological issues. Technical Report ENST-2005-D004 (June 2005), http://www.tsi.enst.fr/publications/enst/techreport-2007-6830.pdf

  20. Stroppa, N., Yvon, F.: Formal models of analogical proportions. Technical report 2006D008, Ecole Nat. Sup. des Telecommunications, Paris (2006)

    Google Scholar 

  21. Tausend, B., Bell, S.: Analogical reasoning for logic programming. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 391–397. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  22. Winston, P.H.: Learning and reasoning by analogy. Com. of ACM, pp. 689–703 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miclet, L., Prade, H. (2009). Handling Analogical Proportions in Classical Logic and Fuzzy Logics Settings. In: Sossai, C., Chemello, G. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2009. Lecture Notes in Computer Science(), vol 5590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02906-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02906-6_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02905-9

  • Online ISBN: 978-3-642-02906-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics