[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Encoding the Revision of Partially Preordered Information in Answer Set Programming

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5590))

Abstract

Most of belief revision operations have been proposed for totally preordrered information. However, in case of partial ignorance, pieces of information are partially preordered and few effective approaches of revision have been proposed. The paper presents a new framework for revising partially preordered information, called Partially Preordered Removed Sets Revision (PPRSR). The notion of removed set, initially defined in the context of the revision of non ordered or totally preordered information is extended to partial preorders. The removed sets are efficiently computed thanks to a suitable encoding of the revision problem into logic programming with answer set semantics. This framework captures the possibilistic revision of partially preordered information and allows for implementing it with ASP. Finally, it shows how PPRSR can be applied to a real application of the VENUS european project before concluding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benferhat, S., Ben-Naim, J., Papini, O., Würbel, E.: Answer set programming encoding of prioritized removed sets revision: Application to gis. In: Applied Intelligence. Springer, Heidelberg

    Google Scholar 

  2. Benferhat, S., Lagrue, S., Papini, O.: Revising partially ordered belief. In: Proc. of NMR 2002, Toulouse, France (2002)

    Google Scholar 

  3. Benferhat, S., Lagrue, S., Papini, O.: Revision with partially ordered information in a possibilistic framework. Fuzzy Sets and Systems 144(1), 25–41 (2004)

    Article  MATH  Google Scholar 

  4. Benferhat, S., Lagrue, S., Papini, O.: Revision of partially ordered information. In: Proc. of IJCAI 2005, Edinburgh, pp. 376–381 (2005)

    Google Scholar 

  5. Dubois, D., Prade, H.: Belief change and possibility theory. In: Gärdenfors, P. (ed.) Belief Revision, pp. 142–182. Cambridge University Press, U. K. (1992)

    Chapter  Google Scholar 

  6. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. Bradford Books/ MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Clasp: A conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Halpern, J.Y.: Defining relative likelihood in partially-ordered structures. In: Proc. of UAI 1996, pp. 299–306 (1996)

    Google Scholar 

  9. Hué, J., Würbel, E., Papini, O.: Removed sets fusion: Performing off the shelf. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N. (eds.) Proc. of ECAI 2008 (2008)

    Google Scholar 

  10. Junker, U., Brewka, G.: Handling partially ordered defaults in tms. In: Proceedings of IJCAI 1989, pp. 1043–1048 (1989)

    Google Scholar 

  11. Katsuno, H., Mendelzon, A.: Propositional Knowledge Base Revision and Minimal Change. Artificial Intelligence 52, 263–294 (1991)

    Article  MATH  Google Scholar 

  12. Lewis, D.K.: Counterfactuals. Harvard University Press, Cambridge (1973)

    MATH  Google Scholar 

  13. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K. (eds.) Proc. of ICLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  14. Papini, O., Würbel, E., Jeansoulin, R., Curé, O., Drap, P., Sérayet, M., Hué, J., Seinturier, J., Long, L.: D3.4 representation of archaeological ontologies 1. Technical report, Projet VENUS (2008)

    Google Scholar 

  15. Würbel, E., Jeansoulin, R., Papini, O.: Revision: An application in the framework of gis. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Proc. of KR 2000, pp. 505–516 (2000)

    Google Scholar 

  16. Yahi, S., Benferhat, S., Lagrue, S., Sérayet, M., Papini, O.: A lexicographic inference for partially preordered belief bases. In: Brewka, G., Lang, J. (eds.) Proc. of KR 2008, pp. 507–516 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sérayet, M., Drap, P., Papini, O. (2009). Encoding the Revision of Partially Preordered Information in Answer Set Programming. In: Sossai, C., Chemello, G. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2009. Lecture Notes in Computer Science(), vol 5590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02906-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02906-6_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02905-9

  • Online ISBN: 978-3-642-02906-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics