Abstract
The U.S. armed services are widely adopting simulation-based training, largely to reduce costs associated with live training. However simulation-based training still requires a high instructor-to-student ratio which is expensive. Intelligent tutoring systems target this need, but they are often associated with high costs for knowledge engineering and implementation. To reduce these costs, we are investigating the use of machine learning to produce models of expert behavior for automated student assessment. A key concern about the expert modeling approach is whether it can provide accurate assessments on complex tasks of real-world interest. This study evaluates of the accuracy of model-based assessments on a complex task. We trained employees at Sandia National Laboratories on a Navy simulator and then compared their simulation performance to the performance of experts using both automated and manual assessment. Results show that automated assessments were comparable to the manual assessments on three metrics.
Chapter PDF
Similar content being viewed by others
Keywords
References
Abbott, R.G.: Automated expert modeling for automated student evaluation. Intelligent Tutoring Systems, 1–10 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stevens, S.M., Forsythe, J.C., Abbott, R.G., Gieseler, C.J. (2009). Experimental Assessment of Accuracy of Automated Knowledge Capture. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds) Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience. FAC 2009. Lecture Notes in Computer Science(), vol 5638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02812-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-02812-0_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02811-3
Online ISBN: 978-3-642-02812-0
eBook Packages: Computer ScienceComputer Science (R0)