[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Markovian Modelling of Internet Traffic

  • Chapter
Network Performance Engineering

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5233))

Abstract

This tutorial discusses the suitability of Markovian models to describe IP network traffic that exhibits peculiar scale invariance properties, such as self-similarity and long range dependence. Three Markov Modulated Poisson Processes (MMPP), and their associated parameter fitting procedures, are proposed to describe the packet arrival process by incorporating these peculiar behaviors in their mathematical structure and parameter inference procedures. Since an accurate modeling of certain types of IP traffic requires matching closely not only the packet arrival process but also the packet size distribution, we also discuss a discrete-time batch Markovian arrival process that jointly characterizes the packet arrival process and the packet size distribution. The accuracy of the fitting procedures is evaluated by comparing the long range dependence properties, the probability mass function at each time scale and the queuing behavior corresponding to measured and synthetic traces generated from the inferred models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 93.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2(1), 1–15 (1994)

    Article  Google Scholar 

  2. Beran, J., Sherman, R., Taqqu, M., Willinger, W.: Long-range dependence in variable-bit rate video traffic. IEEE Transactions on Communications 43(2/3/4), 1566–1579 (1995)

    Article  Google Scholar 

  3. Crovella, M., Bestavros, A.: Self-similarity in World Wide Web traffic: Evidence and possible causes. IEEE/ACM Transactions on Networking 5(6), 835–846 (1997)

    Article  Google Scholar 

  4. Paxson, V., Floyd, S.: Wide-area traffic: The failure of Poisson modeling. IEEE/ACM Transactions on Networking 3(3), 226–244 (1995)

    Article  Google Scholar 

  5. Ryu, B., Elwalid, A.: The importance of long-range dependence of VBR video traffic in ATM traffic engineering: Myths and realities. ACM Computer Communication Review 26, 3–14 (1996)

    Article  Google Scholar 

  6. Grossglauser, M., Bolot, J.C.: On the relevance of long-range dependence in network traffic. IEEE/ACM Transactions on Networking 7(5), 629–640 (1999)

    Article  Google Scholar 

  7. Nogueira, A., Valadas, R.: Analyzing the relevant time scales in a network of queues. In: Proceedings of SPIE’s International Symposium ITCOM 2001 (August 2001)

    Google Scholar 

  8. Heyman, D., Lakshman, T.: What are the implications of long range dependence for VBR video traffic engineering? IEEE/ACM Transactions on Networking 4(3), 301–317 (1996)

    Article  Google Scholar 

  9. Neidhardt, A., Wang, J.: The concept of relevant time scales and its application to queuing analysis of self-similar traffic. In: Proceedings of SIGMETRICS 1998/PERFORMANCE 1998, pp. 222–232 (1998)

    Google Scholar 

  10. Yoshihara, T., Kasahara, S., Takahashi, Y.: Practical time-scale fitting of self-similar traffic with Markov-modulated Poisson process. Telecommunication Systems 17(1-2), 185–211 (2001)

    Article  MATH  Google Scholar 

  11. Salvador, P., Valadas, R.: Framework based on markov modulated poisson processes for modeling traffic with long-range dependence. In: van der Mei, R.D., de Bucs, F.H.S. (eds.) Internet Performance and Control of Network Systems II, August 2001. Proceedings SPIE, vol. 4523, pp. 221–232 (2001)

    Google Scholar 

  12. Salvador, P., Valadas, R.: A fitting procedure for Markov modulated Poisson processes with an adaptive number of states. In: Proceedings of the 9th IFIP Working Conference on Performance Modelling and Evaluation of ATM & IP Networks (June 2001)

    Google Scholar 

  13. Andersen, A., Nielsen, B.: A Markovian approach for modeling packet traffic with long-range dependence. IEEE Journal on Selected Areas in Communications 16(5), 719–732 (1998)

    Article  Google Scholar 

  14. Hajek, B., He, L.: On variations of queue response for inputs with the same mean and autocorrelation function. IEEE/ACM Transactions on Networking 6(5), 588–598 (1998)

    Article  Google Scholar 

  15. Feldmann, A., Gilbert, A., Willinger, W.: Data networks as cascades: Investigating the multifractal nature of internet WAN traffic. In: Proceedings of SIGCOMM, pp. 42–55 (1998)

    Google Scholar 

  16. Feldmann, A., Gilbert, A.C., Huang, P., Willinger, W.: Dynamics of IP traffic: A study of the role of variability and the impact of control. In: SIGCOMM, pp. 301–313 (1999)

    Google Scholar 

  17. Riedi, R., Véhel, J.: Multifractal properties of TCP traffic: a numerical study. Technical Report No 3129, INRIA Rocquencourt, France (February 1997), www.dsp.rice.edu/~riedi

  18. Salvador, P., Valadas, R., Pacheco, A.: Multiscale fitting procedure using Markov modulated Poisson processes. Telecommunications Systems 23(1-2), 123–148 (2003)

    Article  Google Scholar 

  19. Nogueira, A., Salvador, P., Valadas, R., Pacheco, A.: Fitting self-similar traffic by a superposition of mmpps modeling the distribution at multiple time scales. IEICE Transactions on Communications E84-B(8), 2134–2141 (2003)

    Google Scholar 

  20. Nogueira, A., Salvador, P., Valadas, R., Pacheco, A.: Modeling self-similar traffic through markov modulated poisson processes over multiple time scales. In: Proceedings of the 6th IEEE International Conference on High Speed Networks and Multimedia Communications (July 2003)

    Google Scholar 

  21. Nogueira, A., Salvador, P., Valadas, R., Pacheco, A.: Hierarchical approach based on mmpps for modeling self-similar traffic over multiple time scales. In: Proceedings of the First International Working Conference on Performance Modeling and Evaluation of Heterogeneuous Networks (HET-NETs 2003) (July 2003)

    Google Scholar 

  22. Klemm, A., Lindemann, C., Lohmann, M.: Traffic modeling of IP networks using the batch Markovian arrival process. Performance Evaluation 54(2), 149–173 (2003)

    Article  MATH  Google Scholar 

  23. Gao, J., Rubin, I.: Multifractal analysis and modeling of long-range-dependent traffic. In: Proceedings of International Conference on Communications ICC 1999, June 1999, pp. 382–386 (1999)

    Google Scholar 

  24. Lucantoni, D.M.: New results on the single server queue with a batch Markovian arrival process. Stochastic Models 7(1), 1–46 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lucantoni, D.M.: The BMAP/G/1 queue: A tutorial. In: Donatiello, L., Nelson, R. (eds.) Models and Techniques for Performance Evaluation of Computer and Communication Systems, pp. 330–358. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  26. Pacheco, A., Prabhu, N.U.: Markov-additive processes of arrivals. In: Dshalalow, J.H. (ed.) Advances in Queueing: Theory and Methods, ch. 6, pp. 167–194. CRC, Boca Raton (1995)

    Google Scholar 

  27. Veitch, D., Abry, P.: A wavelet based joint estimator for the parameters of LRD. IEEE Transactions on Information Theory 45(3) (April 1999)

    Google Scholar 

  28. Feldmann, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Performance Evaluation 31(3-4), 245–279 (1997)

    Article  Google Scholar 

  29. Osborne, M., Smyth, G.: A modified prony algorithm for fitting sums of exponential functions. SIAM J. Sci. Statist. Comput. 16, 119–138 (1995)

    Article  MATH  Google Scholar 

  30. Salvador, P., Pacheco, A., Valadas, R.: Modeling IP traffic: Joint characterization of packet arrivals and packet sizes using BMAPs. Computer Networks Journal 44, 335–352 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nogueira, A., Salvador, P., Valadas, R., Pacheco, A. (2011). Markovian Modelling of Internet Traffic. In: Kouvatsos, D.D. (eds) Network Performance Engineering. Lecture Notes in Computer Science, vol 5233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02742-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02742-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02741-3

  • Online ISBN: 978-3-642-02742-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics