[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Queueing Networks with Blocking: Analysis, Solution Algorithms and Properties

  • Chapter
Network Performance Engineering

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5233))

Abstract

Queueing network models with finite capacity queues and blocking are used for modeling and performance evaluation of systems with finite resources and population constraints, such as communication and computer systems, traffic, production and manufacturing systems. Various blocking types can be defined to represent different system behaviors, network protocols and technologies. Queueing networks with blocking are difficult to analyze, except for the special class of product-form networks. Most of the analytical methods proposed in literature provide an approximate solution with a limited computational cost. We introduce queueing networks with finite capacity queues and blocking, the main solution techniques for their analysis, both exact and approximate algorithms, and some network properties. We discuss the conditions under which exact solutions can be derived, and criteria for the appropriate selection of approximate methods. We present equivalence properties among different types of blocking types, the analysis of heterogeneous networks, and some application examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 93.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I.F.: On the Exact and Approximate Throughput Analysis of Closed Queueing Networks with Blocking. IEEE Trans. Soft. Eng. 14, 62–71 (1988)

    Article  Google Scholar 

  2. Akyildiz, I.F.: Mean value analysis of blocking queueing networks. IEEE Trans. Soft. Eng 14, 418–429 (1988)

    Article  Google Scholar 

  3. Akyildiz, I.F., Von Brand, H.: Exact solutions for open, closed and mixed queueing networks with rejection blocking. J. Theor. Comp. Sci. 64, 203–219 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Altiok, T., Perros, H.G.: Approximate analysis of arbitrary configurations of queueing networks with blocking. Ann. Oper. Res. 9, 481–509 (1987)

    Article  Google Scholar 

  5. Awan, I.U., Kouvatsos, D.D.: Approximate analysis of QNMs with space and service priorities. In: Kouvatsos, D.D. (ed.) Performance Analysis of ATM Networks, ch. 25, pp. 497–521. Kluwer, IFIP Publication (1999)

    Google Scholar 

  6. Balsamo, S.: Closed Queueing Networks with Finite Capacity Queues: Approximate analysis. In: Proc. ESM 2000, SCS, Europ. Sim. Multiconf. Ghent, May 23-26 (2000)

    Google Scholar 

  7. Balsamo, S., Clo’, C., Donatiello, L.: Cycle Time Distribution of Cyclic Queueing Network with Blocking. Performance Evaluation 14(3) (1993)

    Google Scholar 

  8. Balsamo, S., Clo’, C.: A Convolution Algorithm for Product Form Queueing Networks with Blocking. Annals of Operations Research 79, 97–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balsamo, S., De Nitto, V.: A survey of Product-form Queueing Networks with Blocking and their Equivalences. Annals of Operations Research 48 (1994)

    Google Scholar 

  10. Balsamo, S., De Nitto, V., Onvural, R.: Analysis of Queueing Networks with Blocking. Kluwer Academic Publishers, Dordrecht (2001)

    Book  MATH  Google Scholar 

  11. Balsamo, S., Donatiello, L.: On the Cycle Time Distribution in a Two-stage Queueing Network with Blocking. IEEE Trans. on Soft. Eng. 13, 1206–1216 (1989)

    Article  Google Scholar 

  12. Balsamo, S., Iazeolla, G.: Some Equivalence Properties for Queueing Networks with and without Blocking. In: Agrawala, Tripathi (eds.) Performance 1983. North-Holland, Amsterdam (1983)

    Google Scholar 

  13. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, G.: Open, closed, and mixed networks of queues with different classes of customers. J. of ACM 22, 248–260 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boucherie, R., Van Dijk, N.: On the arrival theorem for product form queueing networks with blocking. Performance Evaluation 29, 155–176 (1997)

    Article  Google Scholar 

  15. Boxma, O., Konheim, A.G.: Approximate analysis of exponential queueing systems with blocking. Acta Informatica 15, 19–66 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brandwajn, A., Jow, Y.L.: An approximation method for tandem queueing systems with blocking. Operations Research 1, 73–83 (1988)

    Article  MATH  Google Scholar 

  17. Buzacott, J.A., Shanthikumar, J.G.: Design of Manufacturing Systems using Queueing Models. Queueing Systems: Theory and Applications (1992)

    Google Scholar 

  18. Cheng, D.W.: Analysis of a tandem queue with state dependent general blocking: a GSMP perspective. Performance Evaluation 17, 169–173 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Clo’, C.: MVA for Product-Form Cyclic Queueing Networks with RS Blocking. Annals of Operations Research 79 (1998)

    Google Scholar 

  20. Dallery, Y., Frein, Y.: On decomposition methods for tandem queueing networks with blocking. Operations Research 14, 386–399 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dallery, Y., Liu, Z., Towsley, D.F.: Equivalence, reversibility, symmetry and concavity properties in fork/join queueing networks with blocking. J. of the ACM 41, 903–942 (1994)

    Article  MathSciNet  Google Scholar 

  22. Dallery, Y., Towsley, D.F.: Symmetry property of the throughput in closed tandem queueing networks with finite buffers. Op. Res. Letters 10, 541–547 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frein, Y., Dallery, Y.: Analysis of Cyclic Queueing Networks with Finite Buffers and Blocking Before Service. Performance Evaluation 10, 197–210 (1989)

    Article  MathSciNet  Google Scholar 

  24. Gershwin, S.B.: An efficient decomposition method for the approximate evaluation of tandem queues with finite storage space and blocking. Oper. Res. 35, 291–305 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gordon, W.J., Newell, G.F.: Cyclic queueing systems with restricted queues. Oper. Res. 15, 286–302 (1967)

    Article  MATH  Google Scholar 

  26. Hillier, F.S., Boling, W.: Finite queues in series with exponential or Erlang service times - a numerical approach. Oper. Res. 15, 286–303 (1967)

    Article  MATH  Google Scholar 

  27. Hordijk, A., Van Dijk, N.: Networks of queues with blocking. In: Kylstra, K.J. (ed.) Performance 1981, pp. 51–65. North Holland, Amsterdam (1981)

    Google Scholar 

  28. Jun, K.P., Perros, H.G.: An approximate analysis of open tandem queueing networks with blocking and general service times. Europ. Journal of Operations Research 46, 123–135 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kouvatsos, D.D.: Maximum Entropy Methods for General Queueing Networks. In: Potier (ed.) Proc. Modeling Tech. and Tools for Perf. Analysis, pp. 589–608. North-Holland, Amsterdam (1983)

    Google Scholar 

  30. Kouvatsos, D.D.: A Universal Maximum Entropy Solution for Complex Queueing Systems and Networks. In: Karmeshu (ed.) Entropy Measures, maximum Entropy Principles and Emerging Applications, pp. 137–162. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Kouvatsos, D., Awan, I.U.: Arbitrary closed queueing networks with blocking and multiple job classes. In: Proc. Third Int. Work. on Queueing Networks with Finite Capacity, Bradford, UK, July 6-7 (1995)

    Google Scholar 

  32. Kouvatsos, D.D., Awan, I.U.: MEM for arbitrary closed queueing networks with RS blocking and multiple job classes. Annals of Oper. Res. 79, 231–269 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kouvatsos, D., Awan, I.U.: Entropy maximization and open queueing networks with priorities and blocking. Performance Evaluation 51, 191–227 (2003)

    Article  Google Scholar 

  34. Kouvatsos, D., Denazis, S.G.: Entropy maximized queueing networks with blocking and multiple job classes. Performance Evaluation 17, 189–205 (1993)

    Article  MATH  Google Scholar 

  35. Kouvatsos, D.D., Xenios, N.P.: MEM for arbitrary queueing networks with multiple general servers and repetitive-service blocking. Perf. Ev. 10, 106–195 (1989)

    MathSciNet  Google Scholar 

  36. Lam, S.S.: Queueing networks with capacity constraints. IBM J. Res. Develop. 21, 370–378 (1977)

    Article  MATH  Google Scholar 

  37. Lee, H.S., Bouhchouch, A., Dallery, Y., Frein, Y.: Performance Evaluation of open queueing networks with arbitrary configurations and finite buffers. In: Proc. Third Int. Work. on Queueing Networks with Finite Capacity, Bradford, UK, July 6-7 (1995)

    Google Scholar 

  38. Mishra, S., Fang, S.C.: A maximum entropy optimization approach to tandem queues with generalized blocking. Perf. Evaluation 30, 217–241 (1997)

    Article  Google Scholar 

  39. Mitra, D., Mitrani, I.: Analysis of a Kanban discipline for cell coordination in production lines I. Management Science 36, 1548–1566 (1990)

    Article  Google Scholar 

  40. Onvural, R.O.: Some Product Form Solutions of Multi-Class Queueing Networks with Blocking. Perf. Evaluation 10(3) (1989)

    Google Scholar 

  41. Onvural, R.O.: A Note on the Product Form Solutions of Multiclass Closed Queueing Networks with Blocking. Performance Evaluation 10, 247–253 (1989)

    Article  MathSciNet  Google Scholar 

  42. Onvural, R.O.: Survey of Closed Queueing Networks with Blocking. ACM Computing Surveys 22(2), 83–121 (1990)

    Article  Google Scholar 

  43. Onvural, R.O., Perros, H.G.: On Equivalencies of Blocking Mechanisms in Queueing Networks with Blocking. Oper. Res. Letters 5, 293–298 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Onvural, R.O., Perros, H.G.: Equivalencies Between Open and Closed Queueing Networks with Finite Buffers. Performance Evaluation (1988)

    Google Scholar 

  45. Onvural, R.O., Perros, H.G.: Some equivalencies on closed exponential queueing networks with blocking. Performance Evaluation 9, 111–118 (1989)

    Article  MATH  Google Scholar 

  46. Onvural, R.O., Perros, H.G.: Throughput Analysis in Cyclic Queueing Networks with Blocking. IEEE Trans. Software Engineering 15, 800–808 (1989)

    Article  MATH  Google Scholar 

  47. Perros, H.G.: Queueing networks with blocking. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  48. Perros, H.G., Altiok, T.: Approximate analysis of open networks of queues with blocking: tandem configurations. IEEE Trans. Soft. Eng. 12, 450–461 (1986)

    Article  Google Scholar 

  49. Raiser, M., Lavenberg, S.S.: Mean Value Analysis of closed multi-chain queueing networks. Journal of ACM 27, 217–224 (1989)

    Google Scholar 

  50. Sereno, M.: Mean Value Analysis of product form solution queueing networks with repetitive service blocking. Performance Evaluation 36-37, 19–33 (1999)

    Article  MATH  Google Scholar 

  51. Skianis, C.A., Kouvatsos, D.D.: Arbitrary open queueing networks with service vacation periods and blocking. Annals of Operations Research 79, 143–180 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Shanthikumar, G.J., Yao, D.D.: Monotonicity Properties in Cyclic Queueing Networks with Finite Buffers. In: Perros, Altiok (eds.) First Int. Work. on Queueing Networks with Blocking. North Holland, Amsterdam (1989)

    Google Scholar 

  53. Akyildiz, Perros (eds.): Special Issue on Queueing Networks with Finite Capacity Queues. Performance Evaluation, vol. 10(3). North Holland, Amsterdam (1989)

    Google Scholar 

  54. Onvural, R.O. (ed.): Special Issue on Queueing Networks with Finite Capacity. Performance Evaluation, vol. 17(3). North-Holland, Amsterdam (1993)

    Google Scholar 

  55. Balsamo, S., Kouvatsos, D.: Special Issue on Queueing Networks with Blocking Performance Evaluation Journal, vol. 51(2-4). North Holland, Amsterdam (2003)

    Google Scholar 

  56. Suri, R., Diehl, G.W.: A variable buffer size model and its use in analytical closed queueing networks with blocking. Management Sci. 32(2), 206–225 (1986)

    Article  MATH  Google Scholar 

  57. van Dijk, N.: On stop = repeat servicing for non-exponential queueing networks with blocking. J. Appl. Prob. 28, 159–173 (1991)

    Article  MATH  Google Scholar 

  58. van Dijk, N.: Stop = recirculate for exponential product form queueing networks with departure blocking. Oper. Res. Lett. 10, 343–351 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  59. Van Dijk, N.: Queueing networks and product form. John Wiley, Chichester (1993)

    Google Scholar 

  60. Yao, D.D., Buzacott, J.A.: Modeling a Class of State Dependent Routing in Flexible Manufacturing Systems. Annals of Oper. Research 3, 153–167 (1985)

    Article  Google Scholar 

  61. Yao, D.D., Buzacott, J.A.: Modeling a class of flexible manufacturing systems with reversible routing. Oper. Res. 35, 87–93 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balsamo, S. (2011). Queueing Networks with Blocking: Analysis, Solution Algorithms and Properties. In: Kouvatsos, D.D. (eds) Network Performance Engineering. Lecture Notes in Computer Science, vol 5233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02742-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02742-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02741-3

  • Online ISBN: 978-3-642-02742-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics