[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Structural Models in Multiple Projection Spaces

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Included in the following conference series:

  • 2221 Accesses

Abstract

We present an Expectation-Maximization learning algorithm (E.M.) for estimating the parameters of partially-constrained Bayesian trees. The Bayesian trees considered here consist of an unconstrained subtree and a set of constrained subtrees. In this tree structure, constraints are imposed on some of the parameters of the parametrized conditional distributions, such that all conditional distributions within the same subtree share the same constraint. We propose a learning method that uses the unconstrained subtree to guide the process of discovering a set of relevant constrained tree substructures. Substructure discovery and constraint enforcement are simultaneously accomplished using an E.M. algorithm. We show how our tree substructure discovery method can be applied to the problem of learning representative pose models from a set of unsegmented video sequences. Our experiments demonstrate the potential of the proposed method for human motion classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: ICPR, pp. 1395–1402 (2005)

    Google Scholar 

  3. Bruce, V., Green, P.R., Georgeson, M.A.: Visual perception: physiology, psychology, and ecology. Psychology Press, Hove (1990)

    Google Scholar 

  4. Culham, J.C., Valyear, K.F.: Human parietal cortex in action. Current Opinion of Neurobiology (March 2, 2006)

    Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. Royal Stat. Soc. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: VS-PETS (October 2005)

    Google Scholar 

  7. Feynman, R., Leighton, R., Sands, M.: The Feynmen Lectures on Physics, 2nd edn., vol. 1. Addison-Wesley, Boston (1963)

    Google Scholar 

  8. Filipovych, R., Ribeiro, E.: Combining models of pose and dynamics for human motion recognition. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part II. LNCS, vol. 4842, pp. 21–32. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Filipovych, R., Ribeiro, E.: Probabilistic combination of visual cues for object classification. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part I. LNCS, vol. 4841, pp. 662–671. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Heckerman, D.: Bayesian networks for data mining. Data Min. Knowl. Discov. 1(1), 79–119 (1997)

    Article  Google Scholar 

  11. Landy, M.S., Kojima, H.: Ideal cue combination for localizing texture-defined edges. Journal of the Optical Society of America A 18(9), 2307–2320 (2001)

    Article  Google Scholar 

  12. Laptev, I., Lindeberg, T.: Space-time interest points. In: Intl. Conf. on Computer Vision, Nice, France (October 2003)

    Google Scholar 

  13. Leibe, B., Mikolajczyk, K., Schiele, B.: Segmentation based multi-cue integration for object detection. In: BMVC, Edinburgh (2006)

    Google Scholar 

  14. Niebles, J.C., Fei-Fei, L.: A hierarchical model of shape and appearance for human action classification. In: CVPR, Minneapolis, USA (June 2007)

    Google Scholar 

  15. Nilsback, M.E., Caputo, B.: Cue integration through discriminative accumulation. In: CVPR, vol. II, pp. 578–585 (2004)

    Google Scholar 

  16. Rotem, O., Greenspan, H., Goldberger, J.: Combining region and edge cues for image segmentation in a probabilistic gaussian mixture framework. In: CVPR (2007)

    Google Scholar 

  17. Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.: A scalable approach to activity recognition based on object use. In: ICPR (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filipovych, R., Ribeiro, E. (2009). Learning Structural Models in Multiple Projection Spaces. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics