Abstract
We present an Expectation-Maximization learning algorithm (E.M.) for estimating the parameters of partially-constrained Bayesian trees. The Bayesian trees considered here consist of an unconstrained subtree and a set of constrained subtrees. In this tree structure, constraints are imposed on some of the parameters of the parametrized conditional distributions, such that all conditional distributions within the same subtree share the same constraint. We propose a learning method that uses the unconstrained subtree to guide the process of discovering a set of relevant constrained tree substructures. Substructure discovery and constraint enforcement are simultaneously accomplished using an E.M. algorithm. We show how our tree substructure discovery method can be applied to the problem of learning representative pose models from a set of unsegmented video sequences. Our experiments demonstrate the potential of the proposed method for human motion classification.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)
Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: ICPR, pp. 1395–1402 (2005)
Bruce, V., Green, P.R., Georgeson, M.A.: Visual perception: physiology, psychology, and ecology. Psychology Press, Hove (1990)
Culham, J.C., Valyear, K.F.: Human parietal cortex in action. Current Opinion of Neurobiology (March 2, 2006)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. Royal Stat. Soc. 39, 1–38 (1977)
Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: VS-PETS (October 2005)
Feynman, R., Leighton, R., Sands, M.: The Feynmen Lectures on Physics, 2nd edn., vol. 1. Addison-Wesley, Boston (1963)
Filipovych, R., Ribeiro, E.: Combining models of pose and dynamics for human motion recognition. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part II. LNCS, vol. 4842, pp. 21–32. Springer, Heidelberg (2007)
Filipovych, R., Ribeiro, E.: Probabilistic combination of visual cues for object classification. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part I. LNCS, vol. 4841, pp. 662–671. Springer, Heidelberg (2007)
Heckerman, D.: Bayesian networks for data mining. Data Min. Knowl. Discov. 1(1), 79–119 (1997)
Landy, M.S., Kojima, H.: Ideal cue combination for localizing texture-defined edges. Journal of the Optical Society of America A 18(9), 2307–2320 (2001)
Laptev, I., Lindeberg, T.: Space-time interest points. In: Intl. Conf. on Computer Vision, Nice, France (October 2003)
Leibe, B., Mikolajczyk, K., Schiele, B.: Segmentation based multi-cue integration for object detection. In: BMVC, Edinburgh (2006)
Niebles, J.C., Fei-Fei, L.: A hierarchical model of shape and appearance for human action classification. In: CVPR, Minneapolis, USA (June 2007)
Nilsback, M.E., Caputo, B.: Cue integration through discriminative accumulation. In: CVPR, vol. II, pp. 578–585 (2004)
Rotem, O., Greenspan, H., Goldberger, J.: Combining region and edge cues for image segmentation in a probabilistic gaussian mixture framework. In: CVPR (2007)
Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.: A scalable approach to activity recognition based on object use. In: ICPR (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Filipovych, R., Ribeiro, E. (2009). Learning Structural Models in Multiple Projection Spaces. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-02611-9_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02610-2
Online ISBN: 978-3-642-02611-9
eBook Packages: Computer ScienceComputer Science (R0)