[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Nonextensive Entropic Image Registration

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Included in the following conference series:

Abstract

We present an image registration approach by optimizing an information divergence based on the nonextensive Tsallis entopy. The optimization is carried out using a modified simultaneous perturbation stochastic approximation algorithm. And we show that this entropic divergence attains its maximum value when the conditional intensity probabilities between the reference image and the transformed target image are degenerate distributions. Experimental results are provided to demonstrate the registration accuracy of the proposed technique in comparison to existing entropic image alignment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hajnal, J., Hill, D., Haweks, D. (eds.): Medical Image Registration. CRC Press LLC, Boca Raton (2001)

    Google Scholar 

  2. Goshtasby, A.A.: 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial Applications. Wiley Publishers, Chichester (2005)

    Google Scholar 

  3. Viola, P., Wells, W.M.: Alignment by maximization of mutual information. International Journal of Computer Vision 24(2), 154–173 (1997)

    Article  Google Scholar 

  4. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. on Medical Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  5. Hero, A.O., Ma, B., Michel, O., Gorman, J.: Applications of entropic spanning graphs. IEEE Signal Processing Magazine 19(5), 85–95 (2002)

    Article  Google Scholar 

  6. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: f-information measures in medical image registration. IEEE Trans. on Medical Imaging 23(12), 1508–1516 (2004)

    Article  Google Scholar 

  7. He, Y., Ben Hamza, A., Krim, H.: A generalized divergence measure for robust image registration. IEEE Trans. on Signal Processing 51(5), 1211–1220 (2003)

    Article  MathSciNet  Google Scholar 

  8. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics 52, 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Martin, S., Morison, G., Nailon, W., Durrani, T.: Fast and accurate image registration using Tsallis entropy and simultaneous perturbation stochastic approximation. Electronic Letters 40(10), 595–597 (2004)

    Article  Google Scholar 

  10. Ben Hamza, A.: A nonextensive information-theoretic measure for image edge detection. Journal of Electronic Imaging 15(1), 130111–130118 (2006)

    Article  Google Scholar 

  11. Mohamed, W., Zhang, Y., Ben Hamza, A., Bouguila, N.: Stochastic optimization approach for entropic image alignment. In: Proc. IEEE International Symposium on Information Theory, Toronto, Canada, pp. 2126–2130 (2008)

    Google Scholar 

  12. Burbea, J., Rao, C.R.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. on Information Theory 28(3), 489–495 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohamed, W., Hamza, A.B. (2009). Nonextensive Entropic Image Registration. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics