Abstract
We present an image registration approach by optimizing an information divergence based on the nonextensive Tsallis entopy. The optimization is carried out using a modified simultaneous perturbation stochastic approximation algorithm. And we show that this entropic divergence attains its maximum value when the conditional intensity probabilities between the reference image and the transformed target image are degenerate distributions. Experimental results are provided to demonstrate the registration accuracy of the proposed technique in comparison to existing entropic image alignment approaches.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hajnal, J., Hill, D., Haweks, D. (eds.): Medical Image Registration. CRC Press LLC, Boca Raton (2001)
Goshtasby, A.A.: 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial Applications. Wiley Publishers, Chichester (2005)
Viola, P., Wells, W.M.: Alignment by maximization of mutual information. International Journal of Computer Vision 24(2), 154–173 (1997)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. on Medical Imaging 16(2), 187–198 (1997)
Hero, A.O., Ma, B., Michel, O., Gorman, J.: Applications of entropic spanning graphs. IEEE Signal Processing Magazine 19(5), 85–95 (2002)
Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: f-information measures in medical image registration. IEEE Trans. on Medical Imaging 23(12), 1508–1516 (2004)
He, Y., Ben Hamza, A., Krim, H.: A generalized divergence measure for robust image registration. IEEE Trans. on Signal Processing 51(5), 1211–1220 (2003)
Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics 52, 479–487 (1988)
Martin, S., Morison, G., Nailon, W., Durrani, T.: Fast and accurate image registration using Tsallis entropy and simultaneous perturbation stochastic approximation. Electronic Letters 40(10), 595–597 (2004)
Ben Hamza, A.: A nonextensive information-theoretic measure for image edge detection. Journal of Electronic Imaging 15(1), 130111–130118 (2006)
Mohamed, W., Zhang, Y., Ben Hamza, A., Bouguila, N.: Stochastic optimization approach for entropic image alignment. In: Proc. IEEE International Symposium on Information Theory, Toronto, Canada, pp. 2126–2130 (2008)
Burbea, J., Rao, C.R.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. on Information Theory 28(3), 489–495 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mohamed, W., Hamza, A.B. (2009). Nonextensive Entropic Image Registration. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-02611-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02610-2
Online ISBN: 978-3-642-02611-9
eBook Packages: Computer ScienceComputer Science (R0)