[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

MISCORE: Mismatch-Based Matrix Similarity Scores for DNA Motif Detection

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5506))

Included in the following conference series:

Abstract

To detect or discover motifs in DNA sequences, two important concepts related to existing computational approaches are motif model and similarity score. One of motif models, represented by a position frequency matrix (PFM), has been widely employed to search for putative motifs. Detection and discovery of motifs can be done by comparing kmers with a motif model, or clustering kmers according to some criteria. In the past, information content based similarity scores have been widely used in searching tools. In this paper, we present a mismatch-based matrix similarity score (namely, MISCORE) for motif searching and discovering purpose. The proposed MISCORE can be biologically interpreted as an evolutionary metric for predicting a kmer as a motif member or not. Weighting factors, which are meaningful for biological data mining practice, are introduced in the MISCORE. The effectiveness of the MISCORE is investigated through exploring its separability, recognizability and robustness. Three well-known information content-based matrix similarity scores are compared, and results show that our MISCORE works well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bram, N.F., et al.: A gal family of upstream activating sequences in yeast: roles in both induction and repression of transcription. The EMBO Journal 5(3), 603 (1986)

    Google Scholar 

  2. Cherry, J.M., et al.: Sgd: Saccharomyces genome database. Nucleic Acids Res. 26(1), 73–79 (1998)

    Article  Google Scholar 

  3. Doniger, S., et al.: Identification of functional transcription factor binding sites using closely related saccharomyces species. Genome Research 15, 701–709 (2005)

    Article  Google Scholar 

  4. Fawcett, T.: An introduction to roc analysis. Pattern Recognition Letters 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  5. Gama-Castro, S., et al.: Regulondb (version 6.0): gene regulation model of escherichia coli k-12 beyond transcription, active (experimental) annotated promoters and textpresso navigation. Nucleic Acids Res. 124, D120–D124 (2008)

    Google Scholar 

  6. Harbison, C., et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004), 99–104 (2004)

    Article  Google Scholar 

  7. Kel, A.E., et al.: Match: A tool for searching transcription factor binding sites in dna sequences. Nucleic Acids Res. 31(13), 3576–3579 (2003)

    Article  Google Scholar 

  8. Moses, et al.: Position specific variation in the rate of evolution in transcription factor binding sites. BMC Evolutionary Biology 3(1), 19 (2003)

    Article  Google Scholar 

  9. Osada, R., et al.: Comparative analysis of methods for representing and searching for transcription factor binding sites. Bioinformatics 20(18), 3516–3525 (2004)

    Article  Google Scholar 

  10. Quandt, K., et al.: Matlnd and Matlnspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucl. Acids Res. 23(23), 4878–4884 (1995)

    Article  Google Scholar 

  11. Sandelin, A., et al.: Jaspar: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 94(Database issue), D91–D94 (2004)

    Google Scholar 

  12. Stormo, G.D.: DNA binding sites:representation and discovery. Bioinformatics 1, 16–23 (2000)

    Article  Google Scholar 

  13. Tomovic, A., Oakeley, E.J.: Position dependencies in transcription factor binding sites. Bioinformatics 23(8), 933–941 (2007)

    Article  Google Scholar 

  14. Wingender, E., et al.: Transfac: a database on transcription factors and their dna binding sites. Nucleic Acids Res. 24(1), 238–241 (1996)

    Article  Google Scholar 

  15. Zhu, J., Zhang, M.Q.: Scpd: a promoter database of the yeast saccharomyces cerevisiae. Bioinformatics 15(7-8), 607–611 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, D., Lee, N.K. (2009). MISCORE: Mismatch-Based Matrix Similarity Scores for DNA Motif Detection. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02490-0_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02489-4

  • Online ISBN: 978-3-642-02490-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics