[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Optimality to Predict Photoreceptor Distribution in the Retina

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5506))

Included in the following conference series:

  • 2148 Accesses

Abstract

The concept of evolution implies that fitness traits of an organism tend toward some constrained optimality. Here, the fitness trait we consider is the distribution of photoreceptors on an organism’s retina. We postulate that an organism’s photoreceptor distribution optimizes some balance between two quantities, a benefit and a cost. The benefit is defined as the area of the field of vision. The cost is defined as the amount of time spent saccading to some target in the visual field; during this time we assume nothing is seen. Three constraints are identified. First, we assume proportional noise exists in the motor command. Second, we assume saccades are a noisy process. Third, we constrain the number of total photoreceptors. This simplified model fails to predict the human retinal photoreceptor distribution in full detail. Encouragingly, the photoreceptor distribution it predicts gets us closer to that goal. We discuss possible reasons for its current failure, and we suggest future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Harris, C.M.: On the optimal control of behaviour: a stochastic perspective. Journal of Neuroscience Methods 83, 73–88 (1998)

    Article  Google Scholar 

  2. Bahill, A.T., Adler, D., Stark, L.: Most naturally occurring human saccades have magnitudes of 15 degrees or less. Invest. Ophthalmol. Vis. Sci. 14(6), 468 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monk, T., Harris, C. (2009). Using Optimality to Predict Photoreceptor Distribution in the Retina. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02490-0_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02489-4

  • Online ISBN: 978-3-642-02490-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics