Abstract
We present a new analysis on the heuristic strategy developed in the hippocampal circuit through the memory and learning process. A heuristic approach rapidly leads a solution close to the best possible answer utilizing easy-access information under the situation in which it is difficult to find the best answer. Focusing on the day trading, which needs the rapid decision making within a restricted time, we demonstrate that the heuristic strategy emerges in the process of the memory integration through the compensation for the limit of the information processing ability of the brain. We expect that findings from our trials will help to reveal the hippocampal role on the establishment of decision making strategies and provide the new idea in order to predict the social behavior or improve the current computer power.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Judea, P.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, New York (1999)
Gigerenzer, G., Engel, C.: Heuristics and the Law. MIT Press, Cambridge (2006)
Marr, D.: Simple Memory: A Theory for Archicortex. Philos. Trans. R. Soc. London Ser. B 262, 23–81 (1971)
O’Reilly, R.C., McClelland, J.L.: Hippocampal Conjunctive Encoding, Storage, and Recall: Avoiding a Trade-Off. Hippocampus 4, 661–682 (1994)
Treves, A., Rolls, E.T.: Computational Analysis of the Role of the Hippocampus in Memory. Hippocampus 4, 374–391 (1994)
McClelland, J.L., Goddard, N.H.: Considerations Arising from a Complementary Learning Systems Perspective on Hippocampus and Neocortex. Hippocampus 6, 654–665 (1996)
O’Reilly, R.C., Rudy, J.W.: Conjunctive Representations in Learning and Memory: Principles of Cortical and Hippocampal Function. Psych. Rev. 108, 311–345 (2001)
Hopfield, J.J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci. U S A 79, 2554–2558 (1982)
Molter, C., Salihoglu, U., Bersini, H.: The Road to Chaos by Time-Asymmetric Hebbian Learning in Recurrent Neural Networks. Neural Comput. 19, 80–110 (2007)
McEliece, R., Posner, E., Rodemich, E., Venkatesh, S.: The capacity of the Hopfield associative memory. IEEE Transactions on Information Theory, IT-33, 461–482 (1987)
Nakashiba, T., Young, J.Z., McHugh, T.J., Buhl, D.L., Tonegawa, S.: Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning. Science 319, 1260–1264 (2008)
McNaughton, B.L., Morris, R.G.M.: Hippocampal Synaptic Enhancement and Information-Storage within a Distributed Memory System. Trends Neurosci. 10, 408–415 (1987)
Lisman, J.E., Otmakhova, N.A.: Storage, Recall, and Novelty Detection of Sequences by the Hippocampus: Elaborating on the SOCRATIC Model to Account for Normal and Aberrant Effects of Dopamine. Hippocampus 11, 551–568 (2001)
Kumaran, D., Maguire, E.A.: Which Computational Mechanisms Operate in the Hippocampus during Novelty Detection? Hippocampus 17, 735–748 (2007)
Leutgeb, J.K., Leutgeb, S., Moser, M.B., Moser, E.I.: Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus. Science 315, 961–966 (2007)
McNaughton, B.L., Nadel, L.: In: Gluck, M.A., Rumelhart, D.E. (eds.) Neuroscience and Connectionist Theory, pp. 1–63. Lawrence Erlbaum, Hillsdale (1989)
Jung, M.W., McNaughton, B.L.: Spatial Selectivity of Unit Activity in the Hippocampal Granular Layer. Hippocampus 3, 165–182 (1993)
Chawla, M.K., Guzowski, J.F., Ramirez-Amaya, V., Lipa, P., Hoffman, K.L., Marriott, L.K., Worley, P.F., McNaughton, B.L., Barnes, C.A.: Sparse, Environmentally Selective Expression of Arc RNA in the Upper Blade of the Rodent Fascia Dentata by Brief Spatial Experience. Hippocampus 15, 579–586 (2005)
Amaral, D.G., Ishizuka, N., Claiborne, B.: Neurons, Numbers and the Hippocampal Network. Prog. Brain Res. 83, 1–11 (1990)
Amaral, D.G., Witter, M.P.: The Three-Dimensional Organization of the Hippocampal Formation: a Review of Anatomical Data. Neuroscience 31, 571–591 (1989)
Norman, K.A., O’Reilly, R.C.: Modeling Hippocampal and Neocortical Contributions to Recognition Memory: a Complementary-Learning-Systems Approach. Psychol. Rev. 110, 611–646 (2003)
Benuskova, L., Kasabov, N.: Modeling L-LTP based on changes in concentration of pCREB transcription factor. Neurocomputing 70, 2035–2040 (2007)
Benuskova, L., Kasabov, N.: Computational neuro-genetic modeling. Springer, New York (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hirabayashi, M., Ohashi, H. (2009). Modeling of Associative Dynamics in Hippocampal Contributions to Heuristic Decision Making. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-02490-0_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02489-4
Online ISBN: 978-3-642-02490-0
eBook Packages: Computer ScienceComputer Science (R0)