[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Topology of Brain Functional Networks: Towards the Role of Genes

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5506))

Included in the following conference series:

Abstract

We have extracted brain functional networks from fMRI data based on temporal correlations of voxel activities during the rest and task periods. The goal of our preliminary research was to study the topology of these networks in terms of small-world and scale-free properties. The small-world property was quite clearly evident whereas the scale-free character was less obvious, especially in the rest condition. In addition, there were some differences between the rest and task functional brain networks as well as between subjects. We discuss the relation of properties of functional brain networks to the topological properties of the underlying anatomical networks, which are largely dependent upon genetic instructions during brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Functional magnetic resonanse imaging (fMRI), http://en.wikipedia.org/wiki/FMRI

  2. Chialvo, D.R.: Critical brain networks. Physica A 340(4), 756 (2004)

    Article  Google Scholar 

  3. Eguíluz, V., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Letters 92, 018102 (2005)

    Google Scholar 

  4. Barabási, A.L., Albert, R.: Emergence of scaling in random network. Science 286, 509 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2002)

    Article  Google Scholar 

  6. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Watts, D.J.: Small Worlds. Princetom University Press, Princeton (2004)

    MATH  Google Scholar 

  8. van den Heuvel, M.P., Stam, C.J., Boersma, M., Hulshoff Pol, H.E.: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage (2005), doi:10.1016/j.neuroimage.2008.08.010

    Google Scholar 

  9. NWB Team, Network Workbench Tool, Indiana University, Northeastern University and University of Michigan, http://nwb.slis.indiana.edu

  10. Humphries, M.D., Gurney, K., Prescott, T.J.: The brainstem reticular formation is a small-world, not scale-free, network. Proc. Biol. Sci. 273, 503–511 (2006)

    Article  Google Scholar 

  11. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Van Wedeen, J., Meuli, R., Thiran, J.-P.: Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2(7), e597, doi:10.1371/journal.pone.0000597

    Google Scholar 

  12. Sporns, O., Chialvo, D., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cog. Sci. 8, 1364–6613 (2004)

    Article  Google Scholar 

  13. Markošová, M.: Network model of human language. Physica A 387, 661 (2008)

    Article  Google Scholar 

  14. Kaiser, M., Hilgetag, C.C.: Modelling the development of cortical systems networks. Neurocomputing 58-60, 297–302 (2004)

    Article  Google Scholar 

  15. Amaral, L., Scala, A., Barthelemy, M., Stanley, H.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97, 11149–11152 (2000)

    Article  Google Scholar 

  16. Molnár, Z., Hoerder-Suabedissen, A., Wang, W.Z., DeProto, J., Davies, K., Lee, S., Jacobs, E.C., Campagnoni, A.T., Paulsen, O.: Genes involved in the formation of the earliest cortical circuits. In: Novartis Found Symp., vol. 288, pp. 212–224 (2007)

    Google Scholar 

  17. Benuskova, L., Kasabov, N.: Computational Neurogenetic Modeling. Springer, New York (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Markošová, M., Franz, L., Beňušková, Ľ. (2009). Topology of Brain Functional Networks: Towards the Role of Genes. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02490-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02489-4

  • Online ISBN: 978-3-642-02490-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics