[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cortical Correspondence with Probabilistic Fiber Connectivity

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Abstract

This paper presents a novel method of optimizing point-based correspondence among populations of human cortical surfaces by combining structural cues with probabilistic connectivity maps. The proposed method establishes a tradeoff between an even sampling of the cortical surfaces (a low surface entropy) and the similarity of corresponding points across the population (a low ensemble entropy). The similarity metric, however, isn’t constrained to be just spatial proximity, but uses local sulcal depth measurements as well as probabilistic connectivity maps, computed from DWI scans via a stochastic tractography algorithm, to enhance the correspondence definition. We propose a novel method for projecting this fiber connectivity information on the cortical surface, using a surface evolution technique. Our cortical correspondence method does not require a spherical parameterization. Experimental results are presented, showing improved correspondence quality demonstrated by a cortical thickness analysis, as compared to correspondence methods using spatial metrics as the sole correspondence criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195–207 (1999)

    Article  Google Scholar 

  2. Fischl, B., Sereno, M., Tootell, R., Dale, A.: High-res. intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 272–284 (1999)

    Google Scholar 

  3. Tosun, D., Prince, J.: Cortical surface alignment using geometry driven multispectral optical flow. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 480–492. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Styner, M., Xu, S., El-Sayed, M., Gerig, G.: Correspondence evaluation in local shape analysis and structural subdivision. In: ISBI, pp. 1192–1195 (2007)

    Google Scholar 

  5. Oguz, I., Cates, J., Fletcher, T., Whitaker, R., Cool, D., Aylward, S., Styner, M.: Cortical correspondence using entropy-based particle systems and local features. In: IEEE Symposium on Biomedical Imaging, ISBI 2008, pp. 1637–1640 (2008)

    Google Scholar 

  6. Styner, M., Rajamani, K., Nolte, L., Zsemlye, G., Székely, G., Taylor, C., Davies, R.: Evaluation of 3D correspondence methods for model building. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Kotcheff, A.C., Taylor, C.J.: Automatic construction of eigenshape models by direct optimization. Medical Image Analysis 2(4), 303–314 (1998)

    Article  Google Scholar 

  8. Davies, R., Twining, C., Cootes, T., Waterton, J., Taylor, C.: A minimum description length approach to statistical shape modeling. TMI 21(5), 525–537 (2002)

    MATH  Google Scholar 

  9. Brechbühler, C., Gerig, G., Kübler, O.: Parametrization of closed surfaces for 3-D shape description. CVIU 61, 154–170 (1995)

    Google Scholar 

  10. Styner, M., Oguz, I., Heimann, T., Gerig, G.: Minimum description length with local geometry. In: Proc. ISBI, pp. 283–1286 (2008)

    Google Scholar 

  11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Intersc., Chichester (1991)

    Book  MATH  Google Scholar 

  12. Cates, J., Fletcher, T., Whitaker, R.: Entropy-based particle systems for shape correspondence. In: MFCA Workshop, MICCAI 2006, pp. 90–99 (2006)

    Google Scholar 

  13. Cates, J., Fletcher, T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44, 625–632 (2000)

    Article  Google Scholar 

  15. Friman, O., Westin, C.F.: Uncertainty in white matter fiber tractography. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 107–114. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Mag. Res. Med. 50, 1077–1088 (2003)

    Article  Google Scholar 

  17. Jones, D., Pierpaoli, C.: Confidence mapping in DT-MRI tractography using a bootstrap approach. Mag. Res. Med. 53, 1143–1149 (2005)

    Article  Google Scholar 

  18. Prastawa, M., Gilmore, J., Lin, W., Gerig, G.: Automatic segmentation of MR images of the developing newborn brain. In: Medical Image Analysis, pp. 457–466 (2005)

    Google Scholar 

  19. Tosun, D., Rettmann, M., Prince, J.: Mapping techniques for aligning sulci across multiple brains. Medical Image Analysis 8(3), 295–309 (2004)

    Article  Google Scholar 

  20. Meyer, M., Desbrun, M., Schroder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. VisMath, 35–57 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oguz, I. et al. (2009). Cortical Correspondence with Probabilistic Fiber Connectivity. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics