[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

In this paper we present a soft computing system developed to optimize the face milling operation under High Speed conditions in the manufacture of steel components like molds with deep cavities. This applied research presents a multidisciplinary study based on the application of neural projection models in conjunction with identification systems, in order to find the optimal operating conditions in this industrial issue. Sensors on a milling centre capture the data used in this industrial case study defined under the frame of a machine-tool that manufactures industrial tools. The presented model is based on a two-phase application. The first phase uses a neural projection model capable of determine if the data collected is informative enough. The second phase is focus on identifying a model for the face milling process based on low-order models such as Black Box ones. The whole system is capable of approximating the optimal form of the model. Finally, it is shown that the Box-Jenkins algorithm, which calculates the function of a linear system from its input and output samples, is the most appropriate model to control such industrial task for the case of steel tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Diaconis, P., Freedman, D.: Asymptotics of Graphical Projections. The Annals of Statistics 12(3), 793–815 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Corchado, E., Fyfe, C.: Connectionist Techniques for the Identification and Suppression of Interfering Underlying Factors. Int. Journal of Pattern Recognition and Artificial Intelligence 17(8), 1447–1466 (2003)

    Article  Google Scholar 

  4. Friedman, J.H., Tukey, J.W.: Projection Pursuit Algorithm for Exploratory Data-Analysis. IEEE Transactions on Computers 23(9), 881–890 (1974)

    Article  MATH  Google Scholar 

  5. Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining and Knowledge Discovery 8(3), 203–225 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Seung, H.S., Socci, N.D., Lee, D.: The Rectified Gaussian Distribution. In: Advances in Neural Information Processing Systems, vol. 10, pp. 350–356 (1998)

    Google Scholar 

  7. Fyfe, C., Corchado, E.: Maximum Likelihood Hebbian Rules. In: Proc. of the 10th European Symposium on Artificial Neural Networks (ESANN 2002), pp. 143–148 (2002)

    Google Scholar 

  8. Corchado, E., Han, Y., Fyfe, C.: Structuring Global Responses of Local Filters Using Lateral Connections. Journal of Experimental & Theoretical Artificial Intelligence 15(4), 473–487 (2003)

    Article  MATH  Google Scholar 

  9. Ljung, L.: System Identification, Theory for the User. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  10. Nögaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural Networks for Modelling and Control of Dynamic Systems. Springer, London (2000)

    Book  Google Scholar 

  11. Söderström, T., Stoica, P.: System identification. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  12. Nelles, O.: Nonlinear System Identification, From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Haber, R., Keviczky, L.: Nonlinear System Identification, Input-Output Modelling Approach. In: Part. 2: Nonlinear System structure Identification. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  14. Haber, R., Keviczky, L.: Nonlinear System Identification, Input-Output Modelling Approach. In: Part 1: Nonlinear System Parameter Estimation. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  15. Stoica, P., Söderström, T.: A useful parametrization for optimal experimental design. IEEE Trans. Automatic. Control AC-27 (1982)

    Google Scholar 

  16. He, X., Asada, H.: A new method for identifying orders of input-output models for nonlinear dynamic systems. In: Proc. of the American Control Conf., S. F., California, pp. 2520–2523 (1993)

    Google Scholar 

  17. Akaike, H.: Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 20, 425–439 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Behrens, A., Westhoff, B.: Fundamental aspects of investigating the HSC-Chip formation process by FEM. Scientific Fundamentals of HSC. Carl Hanser Verlag (2001)

    Google Scholar 

  19. Correa, M., Bielza, C., de Ramirez, M.J., Alique, J.R.: A Bayesian network model for surface roughness prediction in the machining process. International Journal of Systems Science 39(12), 1181–1192 (2008)

    Article  MATH  Google Scholar 

  20. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Chichester (2001)

    MATH  Google Scholar 

  21. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Redondo, R. et al. (2009). A Soft Computing System to Perform Face Milling Operations. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_190

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02481-8_190

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02480-1

  • Online ISBN: 978-3-642-02481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics