[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Intrusion Detection Method Using Neural Networks Based on the Reduction of Characteristics

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Abstract

The application of techniques based on Artificial Intelligence for intrusion detection systems (IDS), mostly, artificial neural networks (ANN), is becoming a mainstream as well as an extremely effective approach to address some of the current problems in this area. Nevertheless, the selection criteria of the features to be used as inputs for the ANNs remains a problematic issue, which can be put, in a nutshell, as follows: The wider the detection spectrum of selected features is, the lower the performance efficiency of the process becomes and vice versa. This paper proposes sort of a compromise between both ends of the scale: a model based on Principal Component Analysis (PCA) as the chosen algorithm for reducing characteristics in order to maintain the efficiency without hindering the capacity of detection. PCA uses a data model to diminish the size of ANN’s input vectors, ensuring a minimum loss of information, and consequently reducing the complexity of the neural classifier as well as maintaining stability in training times. A test scenario for validation purposes was developed, using based-on-ANN IDS. The results obtained based on the tests have demonstrated the validity of the proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Debar, H., Viinikka, J.: Introduction to Intrusion Detection and Security Information Management. In: Aldini, A., Gorrieri, R., Martinelli, F. (eds.) FOSAD 2005. LNCS, vol. 3655, pp. 207–236. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Ghosh, A., Michael, C., Schatz, M.: A real-time intrusion detection system based on learning program behavior. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 93–109. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Grediaga, A., Ibarra, F., García, F., Ledesma, B., Brotons, F.: Aplication of Neural Networks in Network Control and Information Security. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3973, pp. 208–213. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Cortada, P., Sanroma, G., Garcia, P.: IDS based on Self-Organizing Maps. Technical Report, RedIRIS (2002)

    Google Scholar 

  5. Zhang, C., Jiang, J., Kamel, M.: Comparison of BPL and RBF Network in Intrusion Detection System. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 460–470. Springer, Heidelberg (2003)

    Google Scholar 

  6. Zanero, S., Savaresi, S.: Unsupervised Learning Techniques for an Intrusion Detection System. In: ACM Symposium on Applied Computing SAC 2004, pp. 41–419 (2004)

    Google Scholar 

  7. Freeman, J., Skapura, D.: Neural Networks. In: Algorithms, Applications, and Programming Techniques. Addison-Wesley, Reading (1991)

    Google Scholar 

  8. Ramadas, M., Ostermann, S., Tjaden, B.: Detecting Anomalous Network Traffic with Self-Organizing Maps. In: Vigna, G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 36–54. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Lichodzijewski, P., Zincir-Heywood, A., Heywood, M.: Dynamic Intrusion Detection using Self-Organizing Maps. In: 14th Annual Canadian Information Technology Security Symposium (2002)

    Google Scholar 

  10. Mukkamala, S., Sung, A.: Feature Ranking and Selection for Intrusion Detection Systems Using Support Vector Machines. Technical Report, Institute of Minería y Tecnología, Nuevo México (2003)

    Google Scholar 

  11. Sung, A., Mukkamala, S.: Identifying important features for intrusion detection using support vector machines and neural networks. In: Proceedings of International Symposium on Applications and the Internet (2003)

    Google Scholar 

  12. Chebrolua, S., Abrahama, A., Thomasa, J.: Feature Deduction and Ensemble Design of Intrusion Detection Systems. Computers & Security 24, 295–307 (2005)

    Article  Google Scholar 

  13. Xu, X., Wang, X.: An Adaptive Network Intrusion Detection Method Based on PCA and Support Vector Machines. In: Li, X., Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS, vol. 3584, pp. 696–703. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Bouzida, Y.: Efficient Intrusion Detection Using Principal Component Analysis. Technical Report Departement RSM GET/ ENST Bretagne (2005)

    Google Scholar 

  15. Nguyen, D.: A Reconfigurable Architecture for Network Intrusion Detection using Principal Component Analysis. Technical Report, Northwestern University Evanston (2005)

    Google Scholar 

  16. Comer, D.: Internetworking with TCP/IP, vol. 1. Prentice Hall, Englewood Cliffs (2005)

    MATH  Google Scholar 

  17. Kauzoglu, T.: Determining Optimum Structure for Artificial Neural Networks. In: Proceedings of then 25th Annual Technical Conference and Exhibition of the Remote Sensing Society, Cardiff, K, September 1999, pp. 675–682 (1999)

    Google Scholar 

  18. Esbensen, K.: Multivariate Data Análisis – in practice. Camo Press AS (2002)

    Google Scholar 

  19. Tenable Network Security, http://www.nessus.org

  20. Ethereal, http://www.ethereal.com

  21. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  22. MIT Lincoln Laboratory: DARPA Intrusion Detection Evaluation, http://www.ll.mit.edu/IST/ideval/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lorenzo-Fonseca, I., Maciá-Pérez, F., Mora-Gimeno, F.J., Lau-Fernández, R., Gil-Martínez-Abarca, J.A., Marcos-Jorquera, D. (2009). Intrusion Detection Method Using Neural Networks Based on the Reduction of Characteristics. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_162

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_162

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics