[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Bipartite Graph Based Model of Protein Domain Networks

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

Proteins are essential molecules of life in the cell and are involved in multiple and highly specialized tasks encoded in the amino acid sequence. In particular, protein function is closely related to fundamental units of protein structure called domains. Here, we investigate the distribution of kinds of domains in human cells. Our findings show that while the number of domain types shared by k proteins follows a scale-free distribution, the number of proteins composed of k types of domains decays as an exponential distribution. In contrast, previous data analyses and mathematical modeling reported a scale-free distribution for the protein domain distribution because the relation between kinds of domains and the number of domains in a protein was not considered. Based on this finding, we have developed an evolutionary model based on (1) growth process and (2) copy mechanism that explains the emergence of this mixing of exponential and scale-free distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  2. Barabási, A.-L., Oltvai, Z.N.: Network Biology: Understanding the Cells’s Functional Organization. Nature Reviews Genetics 5, 101–113 (2004)

    Article  Google Scholar 

  3. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Newman, M., Barabási, A.-L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2007)

    Google Scholar 

  5. Erdös, P., Rényi, A.: On the Evolution of Random Graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  6. Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.-L.: Hierarchical Organization of Modularity in Metabolic Networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  8. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  9. Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network Motifs in the Transcriptional Regulation Network of Escherichia coli. Nat. Genetics 31, 64–68 (2002)

    Article  Google Scholar 

  10. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  11. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The Large-scale Organization of Metabolic Networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  12. Jeong, H., Mason, S., Barabási, A.-L., Oltvai, Z.N.: Lethality and Centrality in Protein Networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  13. Go, M.: Modular Structural Units, Exons, and Function in Chicken Lysozyme. Proc. Natl. Acad. Sci. USA 80, 1964–1968 (1983)

    Article  Google Scholar 

  14. Go, M.: Correlation of DNA Exonic Regions with Protein Structural Units in Haemoglobin. Nature 291, 90–92 (1981)

    Article  Google Scholar 

  15. Wuchty, S.: Scale-free Behavior in Protein Domain Networks. Mol. Biol. Evo. 18, 1694–1702 (2001)

    Article  Google Scholar 

  16. Karev, G.P., Wolf, Y.I., Rzhetsky, A.Y., Berezovskaya, F.S., Koonin, E.V.: Birth and Death of Protein Domains: A Simple Model of Evolution Explains Power Law Behavior. BMC Evo. Biol. 2, 18 (2002)

    Article  Google Scholar 

  17. Nacher, J.C., Hayashida, M., Akutsu, T.: Protein Domain Networks: Scale-free Mixing of Positive and Negative Exponents. Physica A 367, 538–552 (2006)

    Article  Google Scholar 

  18. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random Graphs with Arbitrary Degree Distributions and Their Applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  19. Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of Growing Random Networks. Phys. Rev. Lett. 85, 4629 (2000)

    Article  Google Scholar 

  20. Kim, J., Krapivsky, P.L., Kahng, B., Redner, S.: Infinite-order Percolation and Giant Fluctuations in a Protein Interaction Network. Phys. Rev. E. 66, 055101 (2002)

    Article  Google Scholar 

  21. Ispolatov, I., Krapivsky, P.L., Yuryev, A.: Duplication-divergence Model of Protein Interaction Network. Phys. Rev. E. 71, 061911 (2005)

    Article  Google Scholar 

  22. Krapivsky, P.L., Redner, S.: Organization of Growing Random Networks. Phys. Rev. E. 63, 066123 (2001)

    Article  Google Scholar 

  23. Barrat, A., Pastor-Satorras, R.: Rate Equation Approach for Correlations in Growing Network Models. Phys. Rev. E 71, 036127 (2005)

    Article  Google Scholar 

  24. Krapivsky, P.L., Redner, S.: Rate Equation Approach for Growing Networks. Lecture Notes in Physics 625, 3–22 (2003)

    Article  MATH  Google Scholar 

  25. Ergün, G.: Human Sexual Contact Network as a Bipartite Graph. Physica A 308, 483–488 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. The UniProt Consortium: The Universal Protein Resource (UniProt). Nucleic Acids Research 36, D190–D195 (2008)

    Google Scholar 

  27. Kersey, P., Bower, L., Morris, L., Horne, A., Petryszak, R., Kanz, C., Kanapin, A., Das, U., Michoud, K., Phan, I., Gattiker, A., Kulikova, T., Faruque, N., Duggan, K., Mclaren, P., Reimholz, B., Duret, L., Penel, S., Reuter, I., Apweiler, R.: Integr8 and Genome Reviews: Integrated Views of Complete Genomes and Proteomes. Nucleic Acids Research 33, D297–D302 (2005)

    Article  Google Scholar 

  28. Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, J.S., Hotz, H.R., Ceric, G., Forslund, K., Eddy, S.R., Sonnhammer, E.L., Bateman, A.: The Pfam protein families database. Nucleic Acids Research 36, D281–D288 (2008)

    Article  Google Scholar 

  29. Luscombe, N.M., Babu, M.M., Yu, H., Snyder, M., Teichmann, S.A., Gerstein, M.: Genomic Analysis of Regulatory Network Dynamics Reveals Large Topological Changes. Nature 431, 308–312 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Nacher, J.C., Ochiai, T., Hayashida, M., Akutsu, T. (2009). A Bipartite Graph Based Model of Protein Domain Networks. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics