Abstract
The paper presents an original statistical approach dedicated to the evaluation of two time intervals which are useful in various chaotic applications, namely: the transient time and the minimum statistical independence sampling distance. The overall procedure relies on Smirnov tests based on two-sample statistic, Kolmogorov-Smirnov tests based on one-sample statistic, a Monte Carlo analysis and an original statistical independence test. The experimental study was performed on the logistic map for different values of its parameter, values considered of much interest in the literature. The proposed statistical approach may guide another experimenter to extend the analysis for other logistic map parameters and also for other chaotic maps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baptista, M.S.: Cryptography with chaos. Physics Letters A 240, 50–54 (1998)
Lévine, B.: Fondements Théoriques de la Radiotechnique Statistique. Tome II, Edition Mir, Moscou (1973)
Mihoc, G., Urseanu, V.: Matematici Aplicate în statistică (in Romanian). Ed. Academiei, Bucureşti (1962)
Beyer, W.H.: Handbook of Tables for Probability and Statistics, 2nd edn. CRC Press, Boca Raton (2000)
Kanso, A., Smaoui, N.: Logistic chaotic maps for binary numbers generators. Chaos, Solitons & Fractals (in press) (2007) doi: 10.1016/j.chaos.2007.10.049
Deane, J.B., Jefferies, D.J.: Chaotic dynamics and forbidden words. In: Proceedings of the Complex 2000 Conference, pp. 265–273. Dunedin, New Zeeland (2000)
Vlad, A., Luca, A., Badea, B.: On statistical independence in the logistic map: a guide to design new chaotic sequences useful in cryptography. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 460–474. Springer, Heidelberg (2007)
Badea, B., Vlad, A.: Revealing statistical independence of two experimental data sets. An improvement on Spearman’s algorithm. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 1166–1176. Springer, Heidelberg (2006)
Luca, A., Vlad, A.: Generating Identically and Independently Distributed Samples Starting from Chaotic Signals. In: Proc. IEEE Int. Symposium on Signals, Circuits and Systems (ISSCS 2005), pp. 227–230. Iaşi, Romania (2005)
Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, 2nd edn. Springer, New York (1994)
Kennedy, M.P., Rovatti, R., Setti, G.: Chaotic Electronics in Telecommunications. CRC Press, Boca Raton (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vlad, A., Luca, A., Frunzete, M. (2009). Computational Measurements of the Transient Time and of the Sampling Distance That Enables Statistical Independence in the Logistic Map. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02457-3_59
Download citation
DOI: https://doi.org/10.1007/978-3-642-02457-3_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02456-6
Online ISBN: 978-3-642-02457-3
eBook Packages: Computer ScienceComputer Science (R0)