[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Collective Evolutionary Indexing of Multimedia Objects

  • Conference paper
Computational Science and Its Applications – ICCSA 2009 (ICCSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5592))

Included in the following conference series:

  • 2624 Accesses

Abstract

The evolution of multimedia technology and the Internet boost the multimedia sharing and searching activities among social networks. The requirements of semantic multimedia retrieval goes far beyond those provided by the text-based search engines technology. Here, we present an collaborative approach that enables the semantic search of the multimedia objects by the collective discovery and meaningful indexing of their semantic concepts. Through the successive use of our model, semantic concepts can be discovered and incorporated by analyzing the users’ search queries, relevance feedback and selection patterns. Eventually, through the growth and evolution of the index hierarchy, the semantic index can be dynamically constructed, validated, and naturally built-up towards the expectation of the social network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azzam, I.A., Leung, C.H.C., Horwood, J.F.: Implicit concept-based image indexing and retrieval. In: Proceedings of the 10th International Multimedia Modeling Conference (MMM 2004), Brisbane, Australia, January 5-7, 2004, p. 354. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  2. Boll, S.: Multitube - where web 2.0 and multimedia could meet. IEEE Multimedia 14(1), 9–13 (2007)

    Article  Google Scholar 

  3. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: the concept revisited. ACM Transactions on Information Systems 20(1), 116–131 (2002)

    Article  Google Scholar 

  4. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Transactions on Graphics 22(1), 83–105 (2003)

    Article  Google Scholar 

  5. Gevers, T., Smeulders, A.: Image Search Engines: An Overview. In: Emerging Topics in Computer Vision, Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

  6. Giannakidou, E., Kompatsiaris, I., Vakali, A.: Semsoc: Semantic, social and content-based clustering in multimedia collaborative tagging systems. In: ICSC 2008: Proceedings of the 2008 IEEE International Conference on Semantic Computing, Washington, DC, USA, pp. 128–135. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  7. Go’mez, J., Vicedo, J.L.: Next-generation multimedia database retrieval. IEEE Multimedia 14(3), 106–107 (2007)

    Article  Google Scholar 

  8. Goth, G.: Multimedia search: Ready or not? IEEE Distributed Systems Online 5(7) (2004)

    Google Scholar 

  9. Haight, F.A.: Handbook of the Poisson Distribution. Wiley, Chichester (1967)

    MATH  Google Scholar 

  10. Hawarth, R., Buxton, H.: Conceptual-description from monitoring and watching image sequences. Image and Vision Computing 18, 105–135 (2000)

    Article  Google Scholar 

  11. Kingman, J.F.C.: Poisson processes. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  12. Leung, C., Liu, J., Chan, W.S., Milani, A.: An architectural paradigm for collaborative semantic indexing of multimedia data objects. In: Sebillo, M., Vitiello, G., Schaefer, G. (eds.) VISUAL 2008. LNCS, vol. 5188, pp. 216–226. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Leung, C.H.C., Liu, J.: Multimedia data mining and searching through dynamic index evolution. In: VISUAL 2007: Proceedings of the 9th International Conference on Visual Information Systems, Shanghai, China, pp. 298–309 (2007)

    Google Scholar 

  14. Makhoul, J., Kubala, F., et al.: Performance measures for information extraction. In: Proceedings of DARPA Broadcast News Workshop, Herndon, VA (1999)

    Google Scholar 

  15. Mu’ller, H., Mu’ller, W., Squire, D.M., Marchand-Maillet, S., Pun, T.: Performance evaluation in content-based image retrieval: Overview and proposals. Pattern Recognition Letters 22(5) (2001)

    Google Scholar 

  16. Over, P., Leung, C.H.C., Ip, H.H.-S., Grubinger, M.: Multimedia retrieval benchmarks. IEEE Multimedia 11(2), 80–84 (2004)

    Article  Google Scholar 

  17. van Rijsbergen, C.J.K.: Getting into information retrieval. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 1–20. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Saint-Jean, F., Johnson, A., Boneh, D., Feigenbaum, J.: Private web search. In: WPES 2007: Proceedings of the 2007 ACM workshop on Privacy in electronic society, pp. 84–90. ACM, New York (2007)

    Chapter  Google Scholar 

  19. Sleeper, A.: Six Sigma Distribution Modeling. McGraw-Hill, New York (2006)

    Google Scholar 

  20. Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.-M., Smeulders, A.W.M.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: MULTIMEDIA 2006: Proceedings of the 14th annual ACM International Conference on Multimedia, pp. 421–430. ACM, New York (2006)

    Google Scholar 

  21. Tam, A.M., Leung, C.H.C.: Structured natural-language descriptions for semantic content retrieval of visual materials. Journal of the American Society for Information Science and Technology 52(11), 930–937 (2001)

    Article  Google Scholar 

  22. Vinay, V., Wood, K., Milic-Frayling, N., Cox, I.J.: Comparing relevance feedback algorithms for web search. In: WWW 2005: Special interest tracks and posters of the 14th International Conference on World Wide Web, pp. 1052–1053. ACM, New York (2005)

    Chapter  Google Scholar 

  23. Wei, X.Y., Ngo, C.W.: Fusing semantics, observability, reliability and diversity of concept detectors for video search. In: MM 2008: Proceedings of the 16th ACM International Conference on Multimedia, pp. 81–90. ACM, New York (2008)

    Google Scholar 

  24. Wong, R.C.F., Leung, C.H.C.: Automatic semantic annotation of real world web images. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1933–1944 (2008)

    Article  Google Scholar 

  25. Xu, Y., Wang, K., Zhang, B., Chen, Z.: Privacy-enhancing personalized web search. In: WWW 2007: Proceedings of the 16th International Conference on World Wide Web, pp. 591–600. ACM, New York (2007)

    Google Scholar 

  26. Yang, B., Hurson, A.R.: Ad hoc image retrieval using hierarchical semantic-based index. In: AINA 2005: Proceedings of the 19th International Conference on Advanced Information Networking and Applications, Washington, DC, USA, pp. 629–634. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  27. Yesilada, Y., Harper, S.: Web 2.0 and the semantic web: hindrance or opportunity?: W4a - International Cross-disciplinary Conference on Web Accessibility 2007. SIGACCESS Access. Comput. (90), 19–31 (2008)

    Google Scholar 

  28. Yoshida, Y., Ueda, T., Tashiro, T., Hirate, Y., Yamana, H.: What’s going on in search engine rankings? In: AINAW 2008: Proceedings of the 22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008), Washington, DC, USA, pp. 1199–1204. IEEE Computer Society, Los Alamitos (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leung, C.H.C., Chan, W.S., Liu, J. (2009). Collective Evolutionary Indexing of Multimedia Objects. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02454-2_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02454-2_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02453-5

  • Online ISBN: 978-3-642-02454-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics