[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Comparison of Multi-objective Grammar-Guided Genetic Programming Methods to Multiple Instance Learning

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5572))

Included in the following conference series:

  • 1717 Accesses

Abstract

This paper develops a first comparative study of multi- objective algorithms in Multiple Instance Learning (MIL) applications. These algorithms use grammar-guided genetic programming, a robust classification paradigm which is able to generate understandable rules that are adapted to work with the MIL framework. The algorithms obtained are based on the most widely used and compared multi-objective evolutionary algorithms. Thus, we design and implement SPG3P-MI based on the Strength Pareto Evolutionary Algorithm, NSG3P-MI based on the Non-dominated Sorting Genetic Algorithm and MOGLG3P-MI based on the Multi-objective genetic local search. These approaches are tested with different MIL applications and compared to a previous single-objective grammar-guided genetic programming proposal. The results demonstrate the excellent performance of multi-objective approaches in achieving accurate models and their ability to generate comprehensive rules in the knowledgable discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artifical Intelligence 89(1-2), 31–71 (1997)

    Article  MATH  Google Scholar 

  2. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: NIPS 2002: Proceedings of Neural Information Processing System, Vancouver, Canada, pp. 561–568 (2002)

    Google Scholar 

  3. Pao, H.T., Chuang, S.C., Xu, Y.Y., Fu, H.: An EM based multiple instance learning method for image classification. Expert Systems with Applications 35(3), 1468–1472 (2008)

    Article  Google Scholar 

  4. Yang, C., Dong, M., Fotouhi, F.: Region based image annotation through multiple-instance learning. In: Multimedia 2005: Proceedings of the 13th Annual ACM International Conference on Multimedia, New York, USA, pp. 435–438 (2005)

    Google Scholar 

  5. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: NIPS 1997: Proceedings of Neural Information Processing System 10, Denver, Colorado, USA, pp. 570–576 (1997)

    Google Scholar 

  6. Zhou, Z.H., Zhang, M.L.: Solving multi-instance problems with classifier ensemble based on constructive clustering. Knowledge and Information Systems 11(2), 155–170 (2007)

    Article  Google Scholar 

  7. Zafra, A., Ventura, S., Romero, C., Herrera-Viedma, E.: Multiple instance learning with genetic programming for web mining. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 919–927. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Ruffo, G.: Learning single and multiple instance decision tree for computer security applications. PhD thesis, Department of Computer Science. University of Turin, Torino, Italy (2000)

    Google Scholar 

  9. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Gloriastrasse 35 (2001)

    Google Scholar 

  10. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Jaszkiewicz, A., Kominek, P.: Genetic local search with distance preserving recombination operator for a vehicle routing problem. European Journal of Operational Research 151(2), 352–364 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zafra, A., Ventura, S.: G3P-MI: A genetic programming algorithm for multiple instance learning. In: Information Science. Elsevier, Amsterdam (submitted)

    Google Scholar 

  13. Whigham, P.A.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, Tahoe City, California, USA, pp. 33–41 (1995)

    Google Scholar 

  14. Shukla, P.K., Deb, K.: On finding multiple pareto-optimal solutions using classical and evolutionary generating methods. European Journal of Operational Research 181(3), 1630–1652 (2007)

    Article  MATH  Google Scholar 

  15. Parrott, D., Xiaodong, L., Ciesielski, V.: Multi-objective techniques in genetic programming for evolving classifiers. In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1141–1148 (September 2005)

    Google Scholar 

  16. Mugambi, E.M., Hunter, A.: Multi-objective genetic programming optimization of decision trees for classifying medical data. In: KES 2003: Knowledge-Based Intelligent Information and Engineering Systems, pp. 293–299 (2003)

    Google Scholar 

  17. Wiens, T.S., Dale, B.C., Boyce, M.S., Kershaw, P.G.: Three way k-fold cross-validation of resource selection functions. Ecological Modelling 212(3-4), 244–255 (2008)

    Article  Google Scholar 

  18. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: A java framework for evolutionary computation soft computing. Soft Computing 12(4), 381–392 (2008)

    Article  Google Scholar 

  19. Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. In: Genetic and Evolutionary Computation, 2nd edn. Springer, New York (2007)

    Google Scholar 

  20. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zafra, A., Ventura, S. (2009). A Comparison of Multi-objective Grammar-Guided Genetic Programming Methods to Multiple Instance Learning. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02319-4_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02318-7

  • Online ISBN: 978-3-642-02319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics