[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Memetic Pareto Differential Evolution for Designing Artificial Neural Networks in Multiclassification Problems Using Cross-Entropy Versus Sensitivity

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2009)

Abstract

This work proposes a Multiobjective Differential Evolution algorithm based on dominance Pareto concept for multiclassification problems using multilayer perceptron neural network models. The algorithm include a local search procedure and optimizes two conflicting objectives of multiclassifiers, a high correct classification rate and a high classification rate for each class, of which the latter is not usually optimized in classification. Once the Pareto front is built, we use two automatic selection methodologies of individuals: the best model with respect to accuracy and the best model with respect to sensitivity (extremes in the Pareto front). These strategies are applied to solve six classification benchmark problems obtained from the UCI repository. The models obtained show a high accuracy and a high classification rate for each class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, New York (2000)

    MATH  Google Scholar 

  2. Zhang, G.P.: Neural Networks for Classification: A Survey. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews 30, 451–462 (2000)

    Article  Google Scholar 

  3. Jin, Y., Sendhoff, B.: Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies. IEEE Transaction on Systems, Man and Cybernetics, Part. C: Applications and reviews 38, 397–415 (2008)

    Google Scholar 

  4. Abbass, H.: An Evolutionary Artificial Neural Networks Approach for Breast Cancer Diagnosis. Artificial Intelligence in Medicine 25, 265–281 (2002)

    Article  Google Scholar 

  5. Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  6. Storn, R., Price, K.: Differential Evolution. A fast and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  Google Scholar 

  7. Igel, C., Hüsken, M.: Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing 50, 105–123 (2003)

    Article  MATH  Google Scholar 

  8. Braga, A.P., Takahashi, R.H.C., Costa, M.A., Teixeira, R.A.: Multi-objective Algorithms for Neural Networks Learning. Studies in Computational Intelligence 16 (2006)

    Google Scholar 

  9. Provost, F., Fawcett, T.: Robust classification system for imprecise environments. In: Proccedings of the Fithteenth National Conference on Artificial Intelligence, pp. 706–713 (1998)

    Google Scholar 

  10. Zielinski, K., Laur, R.: Variants of Differential Evolution for Multi-Objective Optimization. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM 2007), pp. 91–98 (2007)

    Google Scholar 

  11. Ning, G., Zhou, Y.: A Modified Differential Evolution Algorithm for Optimization Neural Network

    Google Scholar 

  12. Abbass, H.A., Sarker, R., Newton, C.: PDE: a Pareto-frontier differential evolution approach formulti-objective optimization problems. In: Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea, vol. 2 (2001)

    Google Scholar 

  13. Fernández, J.C., Gutiérrez, P.A., Hervás, C., Martínez, F.J.: Memetic Pareto Evolutionary Artificial Neural Networks for the determination of growth limits of Listeria Monocytogenes. In: Hybrid Intelligent Systems Conference, HIS 2008, pp. 631–636. IEEE, Barcelona (2008)

    Chapter  Google Scholar 

  14. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.: ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 386–400. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, J.C., Hervás, C., Martínez, F.J., Gutiérrez, P.A., Cruz, M. (2009). Memetic Pareto Differential Evolution for Designing Artificial Neural Networks in Multiclassification Problems Using Cross-Entropy Versus Sensitivity. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02319-4_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02318-7

  • Online ISBN: 978-3-642-02319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics