Abstract
In this paper, we introduce an advanced real-time method for vision-based pedestrian detection made up by the sequential combination of two basic methods applied in a coarse to fine fashion. The proposed method aims to achieve an improved balance between detection accuracy and computational load by taking advantage of the strengths of these basic techniques. Boosting techniques in human detection, which have been demonstrated to provide rapid but not accurate enough results, are used in the first stage to provide a preliminary candidate selection in the scene. Then, feature extraction and classification methods, which present high accuracy rates at expenses of a higher computational cost, are applied over boosting candidates providing the final prediction. Experimental results show that the proposed method performs effectively and efficiently, which supports its suitability for real applications.
This work is supported by CASBLIP project 6-th FP [1]. The authors acknowledge the support of the Technological Institute of Optics, Colour and Imaging of Valencia - AIDO. Dr. Samuel Morillas acknowledges the support of Generalitat Valenciana under grant GVPRE/2008/257 and Universitat Politècnica de València under grant Primeros Proyetos de Investigación 2008/3202.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
CASBLIP Project (FP6-2004-IST-4), http://www.casblip.upv.es
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. IEEE Computer Vision and Pattern Recognition 25, 29 (2001)
Mohan, A., Papageorgiou, C., Poggio, T.: Example-based object detection in images by components. IEEE Trans. Pattern Anal. Mach. Intell. 23(4), 349–361 (2001)
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, San Diego, USA, pp. 886–893 (June 2005)
Dalal, N.: Pedestrian Detector source code, http://www.navneetdalal.com/software
Parra, I., Fernandez, D., Sotelo, M.A., Bergasa, L.M., Revenga, P., Ocaña, M., Garcia, M.A.: Combination of Feature Extraction Methods for SVM Pedestrian Detection. IEEE Trans. Intell. Trans. Sys. 8(2) (June 2007)
Gavrila, D., Philomin, V.: Real-time object detection for ”smart” vehicles. In: Proc IEEE Int. Conf. Comput. Vis, pp. 87–93 (1999)
Broggi, A., Bertozzi, M., Fascioli, A., Sechi, M.: Shape-based pedestrian detection. In: Proc. IEEE Intell. Veh. Symp. Dearborn, MI, pp. 215–220 (October 2000)
Bertozzi, M., Broggi, A., Chapuis, R., Chausse, F., Fascioli, A., Tibaldi, A.: Shape-based pedestrian detection and localization. In: Proc IEEE ITS Conf., Shanghai, China, pp. 328–333 (October 2003)
Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian Detection Using Wavelet Templates. Computer Vision Pattern Recognition (1997)
Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: International Conference on Computer Vision (2003)
Carmen, A., Albiol, A.: Authomatic Pedestrian Detection using boosting techniques. Final Degree Project. Technical University of Valencia (2006)
An implementation of Support Vector Machines (SVM) in C, http://svmlight.joachims.org/
Yuan, Z., Yang, L., Qu, Y., Liu, Y., Jia, X.: A Boosting SVM Chain Learning for Visual Information Retrieval. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1063–1069. Springer, Heidelberg (2006)
Freund, Y., Schapire, R.E.: A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligense 14(5), 771–780 (1999)
Pedestrian Dataset from MIT, http://cbcl.mit.edu/software-datasets/PedestrianData.html
Pedestrian Dataset from INRIA, http://pascal.inrialpes.fr/data/human/
Vapnik, V.: The Nature of Statistical Learning Theory, p. 314. Springer, Heidelberg (2000)
OpenCV library, http://sourceforge.net/projects/opencvlibrary/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Oliver, J., Albiol, A., Morillas, S., Peris-Fajarnés, G. (2009). A Real-Time Person Detection Method for Moving Cameras. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-02319-4_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02318-7
Online ISBN: 978-3-642-02319-4
eBook Packages: Computer ScienceComputer Science (R0)