[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Real-Time Person Detection Method for Moving Cameras

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5572))

Included in the following conference series:

  • 1725 Accesses

Abstract

In this paper, we introduce an advanced real-time method for vision-based pedestrian detection made up by the sequential combination of two basic methods applied in a coarse to fine fashion. The proposed method aims to achieve an improved balance between detection accuracy and computational load by taking advantage of the strengths of these basic techniques. Boosting techniques in human detection, which have been demonstrated to provide rapid but not accurate enough results, are used in the first stage to provide a preliminary candidate selection in the scene. Then, feature extraction and classification methods, which present high accuracy rates at expenses of a higher computational cost, are applied over boosting candidates providing the final prediction. Experimental results show that the proposed method performs effectively and efficiently, which supports its suitability for real applications.

This work is supported by CASBLIP project 6-th FP [1]. The authors acknowledge the support of the Technological Institute of Optics, Colour and Imaging of Valencia - AIDO. Dr. Samuel Morillas acknowledges the support of Generalitat Valenciana under grant GVPRE/2008/257 and Universitat Politècnica de València under grant Primeros Proyetos de Investigación 2008/3202.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CASBLIP Project (FP6-2004-IST-4), http://www.casblip.upv.es

  2. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. IEEE Computer Vision and Pattern Recognition 25, 29 (2001)

    Google Scholar 

  3. Mohan, A., Papageorgiou, C., Poggio, T.: Example-based object detection in images by components. IEEE Trans. Pattern Anal. Mach. Intell. 23(4), 349–361 (2001)

    Article  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, San Diego, USA, pp. 886–893 (June 2005)

    Google Scholar 

  5. Dalal, N.: Pedestrian Detector source code, http://www.navneetdalal.com/software

  6. Parra, I., Fernandez, D., Sotelo, M.A., Bergasa, L.M., Revenga, P., Ocaña, M., Garcia, M.A.: Combination of Feature Extraction Methods for SVM Pedestrian Detection. IEEE Trans. Intell. Trans. Sys. 8(2) (June 2007)

    Google Scholar 

  7. Gavrila, D., Philomin, V.: Real-time object detection for ”smart” vehicles. In: Proc IEEE Int. Conf. Comput. Vis, pp. 87–93 (1999)

    Google Scholar 

  8. Broggi, A., Bertozzi, M., Fascioli, A., Sechi, M.: Shape-based pedestrian detection. In: Proc. IEEE Intell. Veh. Symp. Dearborn, MI, pp. 215–220 (October 2000)

    Google Scholar 

  9. Bertozzi, M., Broggi, A., Chapuis, R., Chausse, F., Fascioli, A., Tibaldi, A.: Shape-based pedestrian detection and localization. In: Proc IEEE ITS Conf., Shanghai, China, pp. 328–333 (October 2003)

    Google Scholar 

  10. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  11. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian Detection Using Wavelet Templates. Computer Vision Pattern Recognition (1997)

    Google Scholar 

  12. Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: International Conference on Computer Vision (2003)

    Google Scholar 

  13. Carmen, A., Albiol, A.: Authomatic Pedestrian Detection using boosting techniques. Final Degree Project. Technical University of Valencia (2006)

    Google Scholar 

  14. An implementation of Support Vector Machines (SVM) in C, http://svmlight.joachims.org/

  15. Yuan, Z., Yang, L., Qu, Y., Liu, Y., Jia, X.: A Boosting SVM Chain Learning for Visual Information Retrieval. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1063–1069. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Freund, Y., Schapire, R.E.: A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligense 14(5), 771–780 (1999)

    Google Scholar 

  17. Pedestrian Dataset from MIT, http://cbcl.mit.edu/software-datasets/PedestrianData.html

  18. Pedestrian Dataset from INRIA, http://pascal.inrialpes.fr/data/human/

  19. Vapnik, V.: The Nature of Statistical Learning Theory, p. 314. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  20. OpenCV library, http://sourceforge.net/projects/opencvlibrary/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oliver, J., Albiol, A., Morillas, S., Peris-Fajarnés, G. (2009). A Real-Time Person Detection Method for Moving Cameras. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02319-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02318-7

  • Online ISBN: 978-3-642-02319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics