Abstract
This paper proposes a novel formulation of the Chan-Vese model for pose invariant shape prior segmentation as a continuous cut problem. The model is based on the classic L 2 shape dissimilarity measure and with pose invariance under the full (Lie-) group of similarity transforms in the plane. To overcome the common numerical problems associated with step size control for translation, rotation and scaling in the discretization of the pose model, a new gradient descent procedure for the pose estimation is introduced. This procedure is based on the construction of a Riemannian structure on the group of transformations and a derivation of the corresponding pose energy gradient. Numerically, this amounts to an adaptive step size selection in the discretization of the gradient descent equations. Together with efficient numerics for TV-minimization we get a fast and reliable implementation of the model. Moreover, the theory introduced is generic and reliable enough for application to more general segmentation- and shape-models.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)
Sethian, J.: Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)
Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2002)
Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging and Vision 20(1–2), 89–97 (2004)
Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: CVPR (2000)
Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)
Cremers, D., Soatto, S.: A pseudo-distance for shape priors in level set segmentation. In: Faugeras, O., Paragios, N. (eds.) 2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision (2003)
Chan, T., Zhu, W.: Level set based prior segmentation. Technical Report UCLA CAM 03-66, Department of Mathematics, UCLA (2003)
Riklin-Raviv, T., Kiryati, N., Sochen, N.: Unlevel-sets: Geometry and prior-based segmentation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 50–61. Springer, Heidelberg (2004)
Fundana, K., Heyden, A., Gosch, C., Schnörr, C.: Continuous graph cuts for prior-based object segmentation. In: Proc. ICPR (2008)
Francois Aujol, J., Chambolle, A.: Dual Norms and Image Decomposition Models. Int. J. Comput. Vis. 63(1), 85–104 (2005)
Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Chambolle, A.: Total variation minimization and a class of binary MRF models. UMR CNRS 7641, Ecole Polytechnique, Centre de mathematiques appliquées (June 2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Overgaard, N.C., Fundana, K., Heyden, A. (2009). Pose Invariant Shape Prior Segmentation Using Continuous Cuts and Gradient Descent on Lie Groups. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-02256-2_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02255-5
Online ISBN: 978-3-642-02256-2
eBook Packages: Computer ScienceComputer Science (R0)