[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tracking Closed Curves with Non-linear Stochastic Filters

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

The joint analysis of motions and deformations is crucial in a number of computer vision applications. In this paper, we introduce a non-linear stochastic filtering technique to track the state of a free curve. The approach we propose is implemented through a particle filter which includes color measurements characterizing the target and the background respectively. We design a continuous-time dynamics that allows us to infer inter-frame deformations. The curve is defined by an implicit level-set representation and the stochastic dynamics is expressed on the level-set function. It takes the form of a stochastic differential equation with Brownian motion of low dimension. Specific noise models lead to traditional evolution laws based on mean curvature motions, while other forms lead to new evolution laws with different smoothing behaviors. In these evolution models, we propose to combine local motion information extracted from the images and an incertitude modeling of the dynamics. The associated filter we propose for curve tracking thus belongs to the family of conditional particle filters. Its capabilities are demonstrated on various sequences with highly deformable objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cremers, D., Soatto, S.: Motion competition: A variational framework for piecewise parametric motion segmentation. IJCV 62(3), 249–265 (2005)

    Article  Google Scholar 

  2. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. on Image Processing 10(10), 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  3. Kimmel, R., Bruckstein, A.M.: Tracking level sets by level sets: a method for solving the shape from shading problem. Comput. Vis. Image Underst. 62(1), 47–58 (1995)

    Article  Google Scholar 

  4. Niethammer, M., Tannenbaum, A.: Dynamic geodesic snakes for visual tracking. In: CVPR (1), pp. 660–667 (2004)

    Google Scholar 

  5. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. of Visual Communication and Image Representation 13, 249–268 (2002)

    Article  Google Scholar 

  7. Sethian, J.: Level set methods: An act of violence - evolving interfaces in geometry, fluid mechanics, computer vision and materials sciences (1996)

    Google Scholar 

  8. Cremers, D.: Dynamical statistical shape priors for level set based tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(8), 1262–1273 (2006)

    Article  Google Scholar 

  9. Leventon, M., Grimson, E., Faugeras, O.: Statistical shape influence in geodesic active contours. In: CVPR (2000)

    Google Scholar 

  10. Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. on Med. Imaging 22(6) (2003)

    Google Scholar 

  11. Cremers, D., Soatto, S.: Variational space-time motion segmentation. In: ICCV 2003: Proceedings of the Ninth IEEE International Conference on Computer Vision, Washington, DC, USA, p. 886. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  12. Papadakis, N., Mmin, E.: A variational technique for time consistent tracking of curves and motion. Journal of Mathematical Imaging and Vision 31(1), 81–103 (2008)

    Article  MathSciNet  Google Scholar 

  13. Jiang, T., Tomasi, C.: Level-set curve particles. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 633–644. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Tracking deforming objects using particle filtering for geometric active contours. IEEE Trans. Pattern Analysis and Machine Intelligence 29(8), 1470–1475 (2007)

    Article  Google Scholar 

  15. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Juan, O., Keriven, R., Postelnicu, G.: Stochastic motion and the level set method in computer vision: Stochastics active contours. International Journal of Computer Vision 69(1), 7–25 (2006)

    Article  Google Scholar 

  17. Arnaud, E., Mmin, E.: Partial linear gaussian model for tracking in image sequences using sequential monte carlo methods. IJCV 74(1), 75–102 (2007)

    Article  Google Scholar 

  18. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, London (1970)

    MATH  Google Scholar 

  19. Liu, J.S., Chen, R.: Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association 93(443), 1032–1044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  21. Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications (Universitext). Springer, Heidelberg (2005)

    Google Scholar 

  22. Chan, T., Vese, L.: An active contour model without edges. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 141–151. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avenel, C., Mémin, E., Pérez, P. (2009). Tracking Closed Curves with Non-linear Stochastic Filters. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics