[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

In this paper we present a new interactive method for tubular structure extraction. The main application and motivation for this work is vessel tracking in 2D and 3D images. The basic tools are minimal paths solved using the fast marching algorithm. This allows interactive tools for the physician by clicking on a small number of points in order to obtain a minimal path between two points or a set of paths in the case of a tree structure. Our method is based on a variant of the minimal path method that models the vessel as a centerline and surface. This is done by adding one dimension for the local radius around the centerline. The crucial step of our method is the definition of the local metrics to minimize. We have chosen to exploit the tubular structure of the vessels one wants to extract to built an anisotropic metric giving higher speed on the center of the vessels and also when the minimal path tangent is coherent with the vessel’s direction. This measure is required to be robust against the disturbance introduced by noise or adjacent structures with intensity similar to the target vessel. We obtain promising results on noisy synthetic and real 2D and 3D images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2(2), 143–168 (1998)

    Article  Google Scholar 

  2. Krissian, K.: Flux-based anisotropic diffusion applied to enhancement of 3D angiogram. TMI 21(11), 1440–1442 (2002)

    Google Scholar 

  3. Frangi, A., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Kirbas, C., Quek, F.K.H.: A review of vessel extraction techniques and algorithms. ACM Computing Surveys 36, 81–121 (2004)

    Article  Google Scholar 

  5. Deschamps, T., Cohen, L.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. MIA 5(4) (December 2001)

    Google Scholar 

  6. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. International Journal of Computer Vision 24, 57–78 (1997)

    Article  Google Scholar 

  7. Jbabdi, S., Bellec, P., Toro, R., Daunizeau, J., Pélégrini-Issac, M., Benali, H.: Accurate anisotropic fast marching for diffusion-based geodesic tractography. Journal of Biomedical Imaging 2008(1), 1–12 (2008)

    Article  Google Scholar 

  8. Li, H., Yezzi, A.: Vessels as 4D curves: Global minimal 4D paths to extract 3D tubular surfaces and centerlines. IEEE Transactions on Medical Imaging 26(9), 1213–1223 (2007)

    Article  Google Scholar 

  9. Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: ECCV, vol. 4, pp. 368–382 (2008)

    Google Scholar 

  10. Sethian, J.A., Vladimirsky, A.: Fast methods for the eikonal and related hamilton- jacobi equations on unstructured meshes. Proceedings of the National Academy of Sciences 97(11), 5699–5703 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sethian, J.A.: A fast marching level set for monotonically advancing fronts. Proceedings of the National Academy of Sciences 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40, 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chopp, D.L.: Replacing iterative algorithms with single-pass algorithms. Proc. Nat. Acad. Sc. USA 98(20), 10992–10993 (2001)

    Article  Google Scholar 

  14. Lin, Q.: Enhancement, extraction, and visualization of 3D volume data. PhD thesis, Linkopings Universitet (2003)

    Google Scholar 

  15. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematic 1, 269–271 (1959)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benmansour, F., Cohen, L.D. (2009). Tubular Anisotropy Segmentation. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics