Abstract
We introduce a reduction technique for the well-known TSP. The basic idea of the approach consists of transforming a TSP instance to another one with smaller size by contracting pseudo backbone edges computed in a preprocessing step, where pseudo backbone edges are edges which are likely to be in an optimal tour. A tour of the small instance can be re-transformed to a tour of the original instance. We experimentally investigated TSP benchmark instances by our reduction technique combined with the currently leading TSP heuristic of Helsgaun. The results strongly demonstrate the effectivity of this reduction technique: for the six VLSI instances xvb13584, pjh17845, fnc19402, ido21215, boa28924, and fht47608 we could set world records, i.e., find better tours than the best tours known so far. The success of this approach is mainly due to the effective reduction of the problem size so that we can search the more important tour subspace more intensively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem. A Computational Study. Princeton University Press, Princeton (2006)
Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J., Espinoza, D., Goycoolea, M., Helsgaun, K.: Certification of an optimal Tour through 85,900 cities. Oper. Res. Lett. 37(1), 11–15 (2009)
Cook, W., Seymour, P.: Tour Merging via Branch-Decomposition. INFORMS J. Comput. 15(3), 233–248 (2003)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
Ernst, C., Dong, C., Jäger, G., Molitor, P., Richter, D.: Finding Good Tours for Huge Euclidean TSP Instances by Iterative Backbone Contraction (submitted for Publication, 2009)
Fischer, T., Merz, P.: Reducing the Size of Traveling Salesman Problem Instances by Fixing Edges. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 72–83. Springer, Heidelberg (2007)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
Goldengorin, B., Jäger, G., Molitor, P.: Some Basics on Tolerances. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 194–206. Springer, Heidelberg (2006)
Goldengorin, B., Jäger, G., Molitor, P.: Tolerances Applied in Combinatorial Optimization. J. Comput. Sci. 2(9), 716–734 (2006)
Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)
Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and Its Variations. Kluwer, Dordrecht (2002)
Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic. European Journal Oper. Res. 126(1), 106–130 (2000)
Helsgaun, K.: An Effective Implementation of K-opt Moves for the Lin-Kernighan TSP Heuristic. Writings on Computer Science 109 (2007)
Hüffner, F.: Algorithms and Experiments for Parameterized Approaches to Hard Graph Problems. PhD Thesis, Friedrich-Schiller-University Jena, Germany (2007)
Kilby, P., Slaney, J.K., Walsh, T.: The Backbone of the Travelling Salesperson. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 175–180 (2005)
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Traveling Salesman Problem - A Guided Tour of Combinatorial Optimization. John Wiley & Sons, Chicester (1985)
Lin, S., Kernighan, B.W.: An Effective Heuristic Algorithm for the Traveling Salesman Problem. Oper. Res. 21, 498–516 (1973)
Möbius, A., Freisleben, B., Merz, P., Schreiber, M.: Combinatorial Optimization by Iterative Partial Transcription. Phys. Rev. E 59(4), 4667–4674 (1999)
Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyanski, L.: Determining Computational Complexity for Characteristic Phase Transitions. Nature 400, 133–137 (1998)
Niedermeier, R.: Invitation to Fixed-Parameter Tractability. Oxford University Press, Oxford (2006)
Reinelt, G.: TSPLIB – a Traveling Salesman Problem Library. ORSA J. Comput. 3, 376–384 (1991)
Ribeiro, C.C., Toso, R.F.: Experimental Analysis of Algorithms for Updating Minimum Spanning Trees on Graphs Subject to Changes on Edge Weights. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 393–405. Springer, Heidelberg (2007)
Richter, D.: Toleranzen in Helsgauns Lin-Kernighan-Heuristik für das TSP. Diploma Thesis, Martin-Luther-University Halle-Wittenberg, Germany (2006)
Richter, D., Goldengorin, B., Jäger, G., Molitor, P.: Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic for the Symmetric TSP. In: Janssen, J., Prałat, P. (eds.) CAAN 2007. LNCS, vol. 4852, pp. 99–111. Springer, Heidelberg (2007)
Slaney, J.K., Walsh, T.: The Backbones in Optimization and Approximation. In: Nebel, B. (ed.) Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 254–259 (2001)
Zhang, W., Looks, M.: A Novel Local Search Algorithm for the Traveling Salesman Problem that Exploits Backbones. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 343–350 (2005)
DIMACS Implementation Challenge: http://www.research.att.com/~dsj/chtsp/
TSPLIB: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
TSP Homepage, http://www.tsp.gatech.edu/
National Instances from the TSP Homepage, http://www.tsp.gatech.edu/world/summary.html
VLSI Instances from the TSP Homepage, http://www.tsp.gatech.edu/vlsi/summary.html
World TSP from the TSP Homepage, http://www.tsp.gatech.edu/world/
Source Code of [1] (Concorde), http://www.tsp.gatech.edu/concorde/index.html
Source Code of [12] (LKH), http://www.akira.ruc.dk/~keld/research/LKH/
Additional Information about Experiments of this Paper, http://www.informatik.uni-halle.de/ti/forschung/toleranzen/kantenkontraktion
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dong, C., Jäger, G., Richter, D., Molitor, P. (2009). Effective Tour Searching for TSP by Contraction of Pseudo Backbone Edges. In: Goldberg, A.V., Zhou, Y. (eds) Algorithmic Aspects in Information and Management. AAIM 2009. Lecture Notes in Computer Science, vol 5564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02158-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-02158-9_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02157-2
Online ISBN: 978-3-642-02158-9
eBook Packages: Computer ScienceComputer Science (R0)