Abstract
Economic success frequently depends on a company’s ability to rapidly identify market changes and to adapt to them. Making optimal decisions within tight time constraints and under consideration of influential factors is one of the most challenging tasks in industry and applied computer science. Gaining expertise in solving optimization problems can therefore significantly increase efficiency and profitability of a company and lead to a competitive advantage. Unfortunately, many real-world optimization problems are notoriously difficult to solve due to their high complexity. For example, in the context of combinatorial optimization (where the search space tends to grow exponentially) or in nonlinear system identification (especially if no a-priori knowledge about the kind of nonlinearity is available) such applications are frequently found. Exact mathematical methods cannot solve these problems in relevant dimensions within reasonable time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Alba and B. Dorronsoro. Solving the vehicle routing problem by using cellular genetic algorithms. In J. Gottlieb and G. R. Raidl, editors, Evolutionary Computation in Combinatorial Optimization, volume 3004 of Lecture Notes in Computer Science, pages 11–20, Coimbra, Portugal, 2004. Springer.
D. Alberer, L. del Re, S. Winkler, and P. Langthaler. Virtual sensor design of particulate and nitric oxide emissions in a DI diesel engine. In Proceedings of the 7th International Conference on Engines for Automobile ICE 2005, 2005. Document Number: 2005-24-063.
Ravindra K. Ahuja, ¨Ozlem Ergun, James B. Orlin, and Abraham P. Punnen. A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):75–102, 2002.
M. Affenzeller. New Hybrid Variants of Genetic Algorithms: Theoretical and Practical Aspects. Schriften der Johannes Kepler Universität Linz. Universitätsverlag Rudolf Trauner, 2003.
M. Affenzeller. Population Genetics and Evolutionary Computation: Theoretical and Practical Aspects. Trauner Verlag, 2005.
E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley Interscience, 2005.
M. Affenzeller and S. Wagner. Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, and N. C. Steele, editors, Adaptive and Natural Computing Algorithms, Springer Computer Science, pages 218–221. Springer, 2005.
M. Affenzeller, S. Wagner, and S. Winkler. Self-adaptive population size adjustment for genetic algorithms. In Alexis Quesada-Arencibia, José Carlos Rodríguez, Roberto Moreno-Diaz jr., and Roberto Moreno-Diaz, editors, Proceedings of Computer Aided Systems Theory: EuroCAST 2007, Lecture Notes in Computer Science, pages 820–828. Springer, 2007.
M. Affenzeller, S. Winkler, S. Wagner, and A. Beham. Genetic Algorithms and Genetic Programming Modern Concepts and Practical Applications. CRC Press, 2009.
Andreas Beham. Parallel tabu search and the multiobjective vehicle routing problem with time windows. In Proceedings of the 21st IEEE International Parallel & Distributed Processing Symposium (IPDPS07), 2007.
T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation. Taylor and Francis, 1997.
Christian Blum, Andrea Roli, and Enrique Alba. An introduction to metaheuristic techniques. In E. Alba, editor, Parallel Metaheuristics: A New Class of Algorithms, Wiley Series on Parallel and Distributed Computing, chapter 1, pages 3–42. Wiley, 2005.
Roberto Battiti and Giampietro Tecchiolli. The Reactive Tabu Search. ORSA Journal on Computing, 6(2):126–140, 1994.
Roland Braune, Stefan Wagner, and Michael Affenzeller. Applying genetic algorithms to the optimization of production planning in a real-world manufacturing environment. In R. Trappl, editor, Cybernetics and Systems 2004, volume 1, pages 41–46. Austrian Society for Cybernetic Studies, 2004.
Thomas Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, 1996.
D. Cavicchio. Adaptive Search Using Simulated Evolution. PhD thesis, University of Michigan, 1975.
Charles Darwin. The Origin of Species. Wordsworth Classics of World Literature. Wordsworth Editions, 1998.
S.A. de Carvalho Jr. and S. Rahmann. Microarray layout as a quadratic assignment problem. In D. Hudson et al., editor, Proceedings of the German Conference on Bioinformatics (GCB), volume P-83 of Lecture Notes in Informatics, pages 11–20. Gesellschaft für Informatik, 2006.
Leandro N. de Castro and Jonathan Timmis. Artificial Immune Systems: A New Computational Intelligence Approach. Springer, 2002.
K. A. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, 1975.
Kenneth A. DeJong. Evolutionary Computation: A Unified Approach. Bradford Books. MIT Press, 2006.
Karl F. Doerner, Michel Gendreau, Peter Greistorfer, Walter Gutjahr, Richard F. Hartl, and Marc Reimann, editors. Metaheuristics: Progress in Complex Systems Optimization. Operations Research/Computer Science Interfaces Series. Springer, 2007.
D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu. Evolutionary Computation. The CRC Press International Series on Computational Intelligence. CRC Press, 2000.
L. del Re, P. Langthaler, C. Furtmüller, S. Winkler, and M. Affenzeller. NOx virtual sensor based on structure identification and global optimization. In Proceedings of the SAE World Congress 2005, 2005. Document Number: 2005-01-0050.
Irina Dumitrescu and Thomas Stützle. Combinations of local search and exact algorithms. In G. Raidl, S. Cagnoni, J. J. R. Cardalda, D. W. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G. Johnson, E. Marchiori, J.-A. Meyer, and M. Middendorf, editors, Applications of Evolutionary Computing, volume 2611 of Lecture Notes in Computer Science, pages 211–223. Springer, 2003.
Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT Press, 2004.
Russel C. Eberhardt, Yuhui Shi, and James Kennedy. Swarm Intelligence. The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, 1 edition, 2001.
D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 5(1):3–14, 1994.
David B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press Series on Computational Intelligence. IEEE Press, 3rd edition, 2006.
Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial Intelligence through Simulated Evolution. Wiley, 1966.
U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery: An overview. Advances in Knowledge Discovery and Data Mining, 1996.
Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive search procedures. Journal of Global Optimization, 6:109–133, 1995.
Y. Gao. Population size and sampling complexity in genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2003, 2003.
F. Glover, M. Laguna, and R. Martí. Fundamentals of scatter search and path relinking. Control and Cybernetics, 39:653–684, 2000.
Fred Glover, Manuel Laguna, and Rafael Martí. Scatter search. In A. Ghosh and S. Tsutsui, editors, Advances in Evolutionary Computing - Theory and Applications, Natural Computing Series. Springer, 2003.
Fred Glover, Manuel Laguna, and Rafael Martí. Scatter search and path relinking: Advances and applications. In Fred Glover and Gary A. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research & Management Science, chapter 1, pages 1–35. Kluwer, 2003.
F. Glover. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13:533–549, 1986.
Fred Glover. Tabu search – part II. ORSA Journal on Computing, 2(1):4–32, 1990.
F. Glover. Tabu Search and Adaptive Memory Programming – Advances, Applications, and Challenges. In R. S. Barr, R. V. Helgason, and J. L. Kennington, editors, Advances in Metaheuristics, Optimization and Stochastic Modeling Technologies, volume 7 of Interfaces in Computer Science and Operations Research, pages 1–75. Springer, Boston, 1997.
Fred Glover. Scatter search and path relinking. In D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price, editors, New Ideas in Optimization, Advanced Topics in Computer Science, pages 297–316. McGraw-Hill, 1999.
B. L. Golden. Introduction to and recent advances in vehicle routing methods. Transportation Planning Models, pages 383–418, 1984.
D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Longman, 1989.
B. Giffler and G. L. Thompson. Algorithms for solving production-scheduling problems. Operations Research, 8(4):487–503, 1960.
Luca Maria Gambardella, Ric Taillard, and Giovanni Agazzi. Macs-vrptw: A multiple ant colony system for vehicle routing problems with time windows. In New Ideas in Optimization, pages 63–76. McGraw-Hill, 1999.
Alain Hertz and Daniel Kobler. A framework for the description of evolutionary algorithms. European Journal of Operational Research, 126:1–12, 2000.
Peter M. Hahn and Jakob Krarup. A hospital facility layout problem finally solved. Journal of Intelligent Manufacturing, 12:487–496, 2001.
P. Hansen and N. Mladenovi´c. Variable Neighborhood Search: Principles and Applications. European Journal of Operational Research, 130:449–467, 2001.
David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Mining (Adaptive Computation and Machine Learning). The MIT Press, August 2001.
J. H. Holland. Adaption in Natural and Artifical Systems. University of Michigan Press, 1975.
J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, Michigan, USA, 1975.
S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by Simulated Annealing. Science, 220(4598):671–680, 1983.
J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Genetic Programming III: Darvinian Invention and Problem Solving. Morgan Kaufmann Publishers, 1999.
J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza. Genetic Programming IV: Routine Human-Competitive Machine Learning. Kluwer Academic Publishers, 2003.
J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, 1992.
John R. Koza. The genetic programming paradigm: Genetically breeding populations of computer programs to solve problems. In Branko Soucek and the IRIS Group, editors, Dynamic, Genetic, and Chaotic Programming, pages 203–321. John Wiley, New York, 1992.
J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. The MIT Press, 1994.
Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer, 2004.
G. Laporte. The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59:345–358, 1992.
Y. Leung, Y. Gao, and Z. B. Xu. Degree of population diversity - a perspective on premature convergence in genetic algorithms and its markov chain analysis. IEEE Transactions on Neural Networks, 8(5):1165–1176, 1997.
S. Lin and B. W. Kernighan. An effective heuristic algorithm for the travelingsalesman problem. Operations Research, 21:498–516, 1973.
M. Lundy and A. Mees. Convergence of an annealing algorithm. Mathematical Programming, 34(1):111–124, 1986.
Helena R. Louren¸co, Olivier C. Martin, and Thomas Stützle. Iterated local search. In Fred Glover and Gary A. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research & Management Science, chapter 11, pages 321–353. Kluwer, 2003.
W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer Verlag, Berlin Heidelberg New York, 2002.
Pablo Moscato and Carlos Cotta. A gentle introduction to memetic algorithms. In Fred Glover and Gary A. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research & Management Science, chapter 5, pages 105–144. Kluwer, 2003.
Z. Michalewicz and B. Fogel. How to Solve It: Modern Heuristics. Springer, 2000.
Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer, 1992.
F. Morrison. The Art of Modeling Dynamic Systems: Forecasting for Chaos, Randomness, and Determinism. John Wiley & Sons, Inc, 1991.
Pablo Moscato. Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, Advanced Topics in Computer Science, pages 219–234. McGraw-Hill, 1999.
Heinz Mühlenbein and Gerhard Paaß. From recombination of genes to the estimation of distributions I. Binary parameters. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN IV, volume 1141 of Lecture Notes in Computer Science, pages 178–187. Springer, 1996.
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.
Antonio J. Nebro, Francisco Luna, Enrique Alba, Bernabé Dorronsoro, Juan J. Durillo, and Andreas Beham. AbYSS: Adapting scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation, 12(4):439–457, 2008.
I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research, 41(1–4):421–451, 1993.
J.-Y. Potvin and S. Bengio. The Vehicle Routing Problem with Time Windows - Part II: Genetic Search. INFORMS Journal on Computing, 8(2):165–172, 1996.
R. Poli. Parallel distributed genetic programming. In David Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in Optimization, Advanced Topics in Computer Science, chapter 27, pages 403–431. McGraw-Hill, Maidenhead, Berkshire, England, 1999.
J. Potvin and J. Rousseau. A parallel route building algorithm for the vehicle routing and scheduling problem with time windows. European Journal of Operations Research, 66:331–340, 1993.
Günther R. Raidl. A unified view on hybrid metaheuristics. In Francisco Almeida, Maria J. Blesa Aguilera, Christian Blum, J. Marcos Moreno-Vega, Melquiades Perez Perez, Andrea Roli, and Michael Sampels, editors, Proceedings of the Hybrid Metaheuristics Workshop, volume 4030 of Lecture Notes of Computer Science, pages 1–12. Springer, 2006.
I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart, Germany, 1973.
Ingo Rechenberg. Evolutionsstrategie ’94. Frommann-Holzboog, 1994.
Edward Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.
Günther R. Raidl and Jakob Puchinger. Combining (integer) linear programming techniques and metaheuristics for combinatorial optimization. In C. Blum, M. J. Blesa Aguilera, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics - An Emerging Approach to Optimization, volume 114 of Studies in Computational Intelligence, chapter 2, pages 31–62. Springer, 2008.
A. L. Samuel. Some studies in machine learning using the game of checkers. In IBM Journal of Research and Development, volume 3, pages 211 – 229, 1959.
H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Birkhäuser Verlag, Basel, Switzerland, 1994.
R. E. Smith, S. Forrest, and A. S. Perelson. Population diversity in an immune systems model: Implications for genetic search. In Foundations of Genetic Algorithms, volume 2, pages 153–166. Morgan Kaufmann Publishers, 1993.
M.M. Solomon. Algorithms for the Vehicle Routing and Scheduling Problem with Time Window Constraints. Operations Research, 35(2):254–265, 1987.
M. Srinivas and L. Patnaik. Adaptive probabilities of crossover and mutation in genetic algorithms. In IEEE Trans. on Systems, Man, and Cybernetics, volume 24, pages 656–667, 1994.
Thomas Stützle. Local Search Algorithms for Combinatorial Problems - Analysis, Algorithms and New Applications. PhD thesis, TU Darmstadt, 1998.
E. Taillard. Robust taboo search for the quadratic assignment problem. Parallel computing, 17(4-5):443–455, 1991.
S. Thangiah, I. Osman, and T. Sun. Hybrid genetic algorithm simulated annealing and tabu search methods for vehicle routing problem with time windows. Technical report, Computer Science Department, Slippery Rock University, 1994.
S. R. Thangiah, J.-Y. Potvin, and T. Sun. Heuristic approaches to vehicle routing with backhauls and time windows. International Journal on Computers and Operations Research, 23(11):1043–1057, 1996.
Christos Voudouris and Edward Tsang. Guided local search and its application to the traveling salesman problem. European Journal of Operational Research, 113(2):469–499, 1999.
S. Wagner and M. Affenzeller. SexualGA: Gender-specific selection for genetic algorithms. In N. Callaos, W. Lesso, and E. Hansen, editors, Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI) 2005, volume 4, pages 76–81. International Institute of Informatics and Systemics, 2005.
S. Winkler, M. Affenzeller, and S. Wagner. New methods for the identification of nonlinear model structures based upon genetic programming techniques. In Z. Bubnicki and A. Grzech, editors, Proceedings of the 15 th International Conference on Systems Science, volume 1, pages 386–393. Oficyna Wydawnicza Politechniki Wroclawskiej, 2004.
S. Winkler, M. Affenzeller, and S. Wagner. Using enhanced genetic programming techniques for evolving classifiers in the context of medical diagnosis - an empirical study. In Proceedings of the GECCO 2006 Workshop on Medical Applications of Genetic and Evolutionary Computation (MedGEC 2006). Association for Computing Machinery (ACM), 2006.
S. Winkler, M. Affenzeller, and S. Wagner. Advanced genetic programming based machine learning. Journal of Mathematical Modelling and Algorithms, 6(3):455–480, 2007.
S. Winkler, M. Affenzeller, and S. Wagner. Selection pressure driven sliding window genetic programming. In Alexis Quesada-Arencibia, José Carlos Rodríguez, Roberto Moreno-Diaz jr., and Roberto Moreno-Diaz, editors, Proceedings of Computer Aided Systems Theory: EuroCAST 2007, Lecture Notes in Computer Science, pages 272–274. Springer, 2007.
Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Variables diversity in systems identification based on extended genetic programming. Proceedings of the 16th International Conference on Systems Science, 2:470–479, 2007.
S. Winkler, M. Affenzeller, and S. Wagner. Offspring selection and its effects on genetic propagation in genetic programming based system identification. In Robert Trappl, editor, Cybernetics and Systems 2008, volume 2, pages 549–554. Austrian Society for Cybernetic Studies, 2008.
Stephan Winkler, Michael Affenzeller, and Stefan Wagner. On the reliability of nonlinear modeling using enhanced genetic programming techniques. In Proceedings of the Chaotic Modeling and Simulation Conference (CHAOS2008), 2008.
S. Winkler, H. Efendic, M. Affenzeller, L. Del Re, and S. Wagner. On-line modeling based on genetic programming. International Journal on Intelligent Systems Technologies and Applications, 2(2/3):255–270, 2006.
S. Winkler. Evolutionary System Identification - Modern Concepts and Practical Applications. PhD thesis, Institute for Formal Models and Verification, Johannes Kepler University Linz, 2008.
Y. Yoshida and N. Adachi. A diploid genetic algorithm for preserving population diversity - pseudo-meiosis GA. In Lecture Notes in Computer Science, volume 866, pages 36–45. Springer, 1994.
Takeshi Yamada and Ryohei Nakano. Job shop scheduling. In A. M. Zalzala and P. J. Fleming, editors, Genetic Algorithms in Engineering Systems, volume 55 of Control Engineering Series, chapter 7, pages 134–160. The Institution of Electrical Engineers, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Affenzeller, M., Beham, A., Kofler, M., Kronberger, G., Wagner, S., Winkler, S. (2009). Metaheuristic Optimization. In: Buchberger, B., et al. Hagenberg Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02127-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-02127-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02126-8
Online ISBN: 978-3-642-02127-5
eBook Packages: Computer ScienceComputer Science (R0)