[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Collaboration at the Basis of Sharing Focused Information: The Opportunistic Networks

  • Chapter
Computational Intelligence

Abstract

There is no doubt that the sharing of information lies at the basis of any collaborative framework. While this is the keen contrivance of social computation paradigms such as ant colonies and neural networks, it also represented the Achilles’ heel of many parallel computation protocols of the eighties. In addition to computational overhead due to the transfer of the information in these protocols, a modern drawback is constituted by intrusions in the communication channels, e.g. spamming in the e-mails, injection of malicious programming codes, or in general attacks on the data communication.While swarm intelligence and connectionist paradigms overcome these drawbacks with a fault tolerant broadcasting of data - any agent has access massively to any message reaching him - in this chapter we discuss within the paradigm of opportunistic networks an automatically selective communication protocol particularly suited to set up a robust collaboration within a very local community of agents. Like medieval monks who escaped world chaos and violence by taking refuge in small and protected communities, modern people may escape the information avalanche by forming virtual communities that do not in any case relinquish most ITC (Information Technology Community) benefits. A communication middleware to obtain this result is represented by opportunistic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special functions (Encyclopedia of Mathematics and its Applications), vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Algorithmic Inference, Wikipedia (2009), http://en.wikipedia.org/wiki/Algorithmic_inference

  3. Apolloni, B., Bassis, S., Gaito, S., Malchiodi, D.: Appreciation of medical treatments by learning underlying functions with good confidence. Current Pharmaceutical Design 13(15), 1545–1570 (2007)

    Article  Google Scholar 

  4. Apolloni, B., Malchiodi, D., Gaito, S.: Algorithmic Inference in Machine Learning, 2nd edn. Advanced Knowledge International, Magill, Adelaide (2006)

    Google Scholar 

  5. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary edn. Addison-Wesley Professional, Reading (1995)

    Google Scholar 

  6. Bertoni, A., Folgieri, R., Valentini, G.: Bio-molecular cancer prediction with random subspace ensembles of support vector machines. Neurocomputing 63(C), 535–539 (2005)

    Article  Google Scholar 

  7. Bhattacharjee, D., Rao, A., Shah, C., Shah, M., helmy, A.: Empirical modeling of campus-wide pedestrian mobility: Observations on the USC campus. In: Proceedings of the IEEE Vehicular Technology Conference, pp. 2887–2891 (2004)

    Google Scholar 

  8. Boudec, J.Y.L., Vojnovic, M.: Perfect simulation and stationarity of a class of mobility models. In: INFOCOM, pp. 2743–2754 (2005)

    Google Scholar 

  9. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for Ad Hoc network research. Wireless Communications & Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications 2 (2002)

    Google Scholar 

  10. Chaintreau, A., Hui, P., Diot, C., Gass, R., Scott, J.: Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing 6(6), 606–620 (2007)

    Article  Google Scholar 

  11. Chen, X., Murphy, A.: Enabling disconnected transitive communication in mobile ad hoc networks. In: Proceedings Workshop Principles of Mobile Computing, pp. 21–27 (2001)

    Google Scholar 

  12. Choffnes, D., Bustamante, F.: An integrated mobility and traffic model for vehicular wireless networks. In: Proc. of the 2nd ACM International Workshop on Vehicular Ad Hoc Networks (VANET) (2005)

    Google Scholar 

  13. Deng, J., Han, Y.S., Chen, P.N., Varshney, P.K.: Optimal transmission range for wireless ad hoc networks based on energy efficiency. IEEE Transactions on Communications 55(9) (2007)

    Google Scholar 

  14. Dorigo, M., Stutzle, T.: Ant Colony Optimization. Bradford Books. The MIT Press, Cambridge (2004)

    Google Scholar 

  15. Drabkin, V., Friedman, R., Kliot, G., Segal, M.: RAPID: Reliable probabilistic dissemination in wireless ad-hoc networks. In: SRDS 2007: 26th IEEE International Symposium on Reliable Distributed Systems, Beijing, China (2007)

    Google Scholar 

  16. Efron, B., Tibshirani, R.: An introduction to the Boostrap. Chapman and Hall/Freeman, New York (1993)

    Google Scholar 

  17. Einstein, A.: Investigations on the theory of the Brownian Movement. Dover Publication Ltd (1956)

    Google Scholar 

  18. Ferro, E., Potorti, F.: Bluetooth and wi-fi wireless protocols: A survey and a comparison. IEEE Wireless Communications 12(1), 12–26 (2005)

    Article  Google Scholar 

  19. Fisher, M.A.: On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London Ser. A 222, 309–368 (1925)

    Article  Google Scholar 

  20. Georgii, H.O.: Gibbs measures and phase transitions. de Gruyter, Berlin (1988)

    Google Scholar 

  21. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)

    Article  Google Scholar 

  22. Grossglauser, M., Tse, D.: Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transaction on Networking 10(4), 477–486 (2002)

    Article  Google Scholar 

  23. Gustafson, J.L.: Reevaluating amdahl’s law. Communications of the ACM 31, 532–533 (1988)

    Article  Google Scholar 

  24. Ho, T.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  25. Jain, R., Lelescu, D., Balakrishnan, M.: An empirical model for user registration patterns in a campus wireless lan. In: Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking (mobiCom), pp. 170–184 (2005)

    Google Scholar 

  26. Johnson, D., Maltz, D.: Dynamic source routing in Ad Hoc wireless networks. In: Imielinski, T., Korth, H.F. (eds.) Mobile Computing, pp. 153–181. Kluwer Academic Publishers, Dordrecht (1996)

    Chapter  Google Scholar 

  27. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decision Support Systems 43(2), 618–644 (2007)

    Article  Google Scholar 

  28. Kangasharju, J., Heinemann, A.: Incentives for opportunistic networks. In: AINAW 2008: Proceedings of the 22nd International Conference on Advanced Information Networking and Applications - Workshops, pp. 1684–1689. IEEE Computer Society, Washington (2008)

    Chapter  Google Scholar 

  29. Karagiannis, T., Le Boudec, J., Vojnovic, M.: Power law and exponential decay of inter contact times between mobile devices. Tech. rep., Microsoft Research, Cambrdidge, UK (2007)

    Google Scholar 

  30. Kim, M., Kotz, D., Kim, S.: Extracting a mobility model from real user traces. In: Proceedings of IEEE INFOCOM (2006)

    Google Scholar 

  31. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  32. Kurose, J.F., Ross, K.W.: Computer Networking – A Top-Down Approach, 4th edn. Pearson Addison Wesley, London (2008)

    Google Scholar 

  33. Lelescu, D., Kozat, U., Jain, R., Balakrishnan, M.: Model T++: An empirical joint space-time registration model. In: Proceedings of ACM MOBIHOC, pp. 61–72 (2006)

    Google Scholar 

  34. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  35. Muqattash, A., Krunz, M.: CDMA-based MAC protocol for wireless ad hoc networks. In: MobiHoc 2003: Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing, pp. 153–164. ACM, New York (2003)

    Chapter  Google Scholar 

  36. Musolesi, M., Mascolo, C.: A community based mobility model for Ad Hoc network research. In: REALMAN 2006: Proceedings of the second international workshop on multi-hop Ad Hoc networks: from theory to reality, pp. 31–38. ACM Press, New York (2006) http://doi.acm.org/10.1145/1132983.1132990

    Chapter  Google Scholar 

  37. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 2nd edn. McGraw-Hill, New York (1984)

    MATH  Google Scholar 

  38. Rohatgi, V.K.: An Introduction to Probablity Theory and Mathematical Statistics. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1976)

    Google Scholar 

  39. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  40. Schuler, D.: Social computing. Communication of ACM 37(1), 28–29 (1994)

    Article  Google Scholar 

  41. Stigler, S.: Studies in the history of probability and statistics. xxxii: Laplace, fisher and the discovery of the concept of sufficiency. Biometrika 60(3), 439–445 (1973)

    MATH  MathSciNet  Google Scholar 

  42. Straub, T., Heinemann, A.: An anonymous bonus point system for mobile commerce based on word-of-mouth recommendation. In: Liebrock, L.M. (ed.) Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 766–773. ACM Press, New York (2004)

    Chapter  Google Scholar 

  43. Surowiecki, J.: The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies and Nations. Little, Brown (2004)

    Google Scholar 

  44. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everything. Penguin Books Ltd, Lodon (2007)

    Google Scholar 

  45. Toh, C.K.: Ad Hoc Mobile Wireless Networks. Prentice Hall Publishers, Englewood Cliffs (2002)

    Google Scholar 

  46. Tseng, Y.C., Ni, S.Y., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a mobile ad hoc network. Wireless Networks 8(2/3), 153–167 (2002)

    Article  MATH  Google Scholar 

  47. Wilks, S.S.: Mathematical Statistics. Wiley Publications in Statistics. John Wiley, New York (1962)

    Google Scholar 

  48. Yoon, J., Liu, M., Noble, B.: Random waypoint considered harmful. In: Proceedings of INFOCOM, IEEE (2003), http://citeseer.ist.psu.edu/yoon03random.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Apolloni, B., Apolloni, G., Bassis, S., Galliani, G.L., Rossi, G. (2009). Collaboration at the Basis of Sharing Focused Information: The Opportunistic Networks. In: Mumford, C.L., Jain, L.C. (eds) Computational Intelligence. Intelligent Systems Reference Library, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01799-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01799-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01798-8

  • Online ISBN: 978-3-642-01799-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics