[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparisons of Machine Learning Methods for Electricity Regional Reference Price Forecasting

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5551))

Included in the following conference series:

Abstract

Effective and reliable electricity price forecast is essential for market participants in setting up appropriate risk management plans in an electricity market. In this paper, we investigate two state-of-the-art statistical learning based machine learning techniques for electricity regional reference price forecasting, namely support vector machine (SVM) and relevance vector machine (RVM). The study results achieved show that, the RVM outperforms the SVM in both forecasting accuracy and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hu, Z., Yu, Y., Wang, Z., Sun, W., Gan, D., Han, Z.: Price Forecasting using an Integrated Approach. In: Proc. Electric Utility Deregulation, Restructuring Power Technologies (2004)

    Google Scholar 

  2. Meng, K., Dong, Z., Wong, K.P.: Self-adaptive RBF Neural Network for Short-term Electricity Price Forecasting, accepted by IET Generation. Transmission & Distribution 51, 120–127 (2008)

    Google Scholar 

  3. Zhang, B., Dong, Z.: An Adaptive Neural-wavelet Model for Short Term Load Forecasting. International Journal of Electric Power Systems Research 59, 121–129 (2001)

    Article  Google Scholar 

  4. Lu, X., Dong, Z., Li, X.: Electricity Market Price Spike Forecast with Data Mining Techniques. International Journal of Electric Power Systems Research 73, 19–29 (2005)

    Article  Google Scholar 

  5. Zhao, J., Dong, Z., Li, X., Wong, K.P.: A Framework for Electricity Price Spike Analysis with Advanced Data Mining Methods. IEEE Transactions on Power Systems 22, 376–385 (2007)

    Article  Google Scholar 

  6. Contreras, J., Espinola, R., Nogales, F.J., Conejo, A.J.: ARIMA Models to Predict Next-day Electricity Prices. IEEE Transactions on Power Systems 18, 1014–1020 (2003)

    Article  Google Scholar 

  7. Garcia, R.C., Contreras, J., Akkeren, M.V., Garcia, J.: A GARCH Forecasting Model to Predict Day-ahead Electricity Prices. IEEE Transactions on Power Systems 20, 867–874 (2005)

    Article  Google Scholar 

  8. Li, G., Liu, C., Mattson, C., Lawarree, J.: Day-ahead Electricity Price Forecasting in a Grid Environment. IEEE Transactions on Power Systems 22, 266–274 (2007)

    Article  Google Scholar 

  9. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  10. Tipping, M.E.: Sparse Bayesian Learning and Relevance Vector Machine. Journal of Machine Learning Research 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (1996)

    Book  MATH  Google Scholar 

  12. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meng, K., Dong, Z., Wang, H., Wang, Y. (2009). Comparisons of Machine Learning Methods for Electricity Regional Reference Price Forecasting. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01507-6_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01507-6_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01506-9

  • Online ISBN: 978-3-642-01507-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics