[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Dahlquist Constant Approach to Stability Analysis of the Static Neural Networks

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5551))

Included in the following conference series:

  • 1517 Accesses

Abstract

Avoiding the difficulty of constructing a proper Lyapunov function, the generalized Dahlquist constant approach is employed to investigate the exponential stability of the static neural networks. Without assuming the boundedness, monotonicity of the activations, a new sufficient conditions for existence of an unique equilibrium and the exponential stability of the neural networks are presented. An example is given to show the effectiveness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haykin, S.: Neural Networks: A Comprehensive Foundation, New York (1994)

    Google Scholar 

  2. Hertz, J., Krogh, A.: Introduction to Theory of Neural Computation. Addison-Wesley, Reading (1994)

    Google Scholar 

  3. Pineda, F.: Generalization of Back-propagation to Recurrent Neural Networks. Phys. Rev. Lett. 59, 2229–2232 (1987)

    Article  MathSciNet  Google Scholar 

  4. Rohwer, R., Forrest, B.: Training Time-dependence in Neural Networks. In: 1st IEEE Int. Conf. Neural Networks, San Diego, CA, pp. 701–708 (1987)

    Google Scholar 

  5. Hopfield, J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Nat. Acad. Sci. 2, 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hopfield, J., Tank, D.: Computing with Neural Circuits:A Model. Scinence 233, 625–633 (1986)

    Article  MATH  Google Scholar 

  7. Xu, Z., Qiao, H., Peng, J., Zhang, B.: A Comparative Study of Two Modeling Approaches in Neural Networks. Neural Networks 17, 73–85 (2004)

    Article  MATH  Google Scholar 

  8. Arik, S.: Global Asymptotic Stability of A Class of Dynamical Neural Networks. IEEE Trans. Circuits Syst. I 47, 568–571 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, T., Amari, S.: New Theorems on Global Convergence of Some Dynamical Systems. Neural Networks 14, 252–255 (2001)

    Google Scholar 

  10. Cohen, M., Grossberg, S.: Absolute Stability of Global Pattern Formation and Parallel Memory Storage by Competitive Neural Networks. IEEE Trans. Syst. Man Cybern. 13, 815–826 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, G., Xu, J.: Analysis of Global Asymptotic Stability of Delayed Recurrent Neural Networks. Dyna. of Cont. Disc. and Impu. Syst. Math. Anal. 13, 306–309 (2006)

    Google Scholar 

  12. Li, P., Cao, J.: Stability in Static Delayed Neural Networks: A Nonlinear Measure Approach. Neurocomputing 69, 1776–1781 (2006)

    Article  Google Scholar 

  13. Wan, A.N., Peng, J., Wang, M.: Generalized Relative Dahlquis t Constant with Application in Stability Analysis of Nonlinear Systems. Mathematica Applicata 18, 328–332 (2005)

    MathSciNet  Google Scholar 

  14. Xu, S., Lam, D.W.C.: Ho: Globally Robust Exponenttial Stability Analysis for Interval Recurrent Neural Networks. Phys. Lett. A 325, 124–133 (2004)

    Article  Google Scholar 

  15. Liang, J., Cao, J.: A Based-on LMI Stability Criterion for Delayed Recurrent Neural networks. Chaos, Solutions & Fractals 28, 154–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, G., Xu, J. (2009). The Dahlquist Constant Approach to Stability Analysis of the Static Neural Networks. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01507-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01507-6_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01506-9

  • Online ISBN: 978-3-642-01507-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics